Mobile Security 14-829 - Fall 2013

Patrick Tague

Class #15 - Mobile Operating Systems

Mobile OSs

 Mobile operating systems are the "glue" that binds all the underlying components, manages them, and represents them to applications

- The list of Mobile OSs is quite long
- We'll just talk about the major ones

Symbian

- Developed by Nokia
- Nokia has now mostly migrated to Windows for smartphones
 - Still using Symbian for some feature phones
- Symbian had the highest world-wide unit sales total through 2010, now basically 0

Android

- Android OS was created by the Open Handset Alliance
 - 84 companies including mobile operators, handset manufacturers, semiconductor companies, software developers, commercialization companies
 - "First complete, open, and free mobile platform"
- World-wide unit sales leader since 2011, currently about 4x anyone else

iOS

- Developed by Apple for iPhone, now extended to iPod, Apple TV, and iPad
 - Only licensed for Apple's proprietary hardware / systems

 Originally developed as a web portal, then revolutionized 3rdparty applications on phones

2nd world-wide since 2011

Blackberry

 Blackberry is a proprietary OS developed by Research in Motion (RIM)

 Targeted at enterprise use and leader in corporate data management

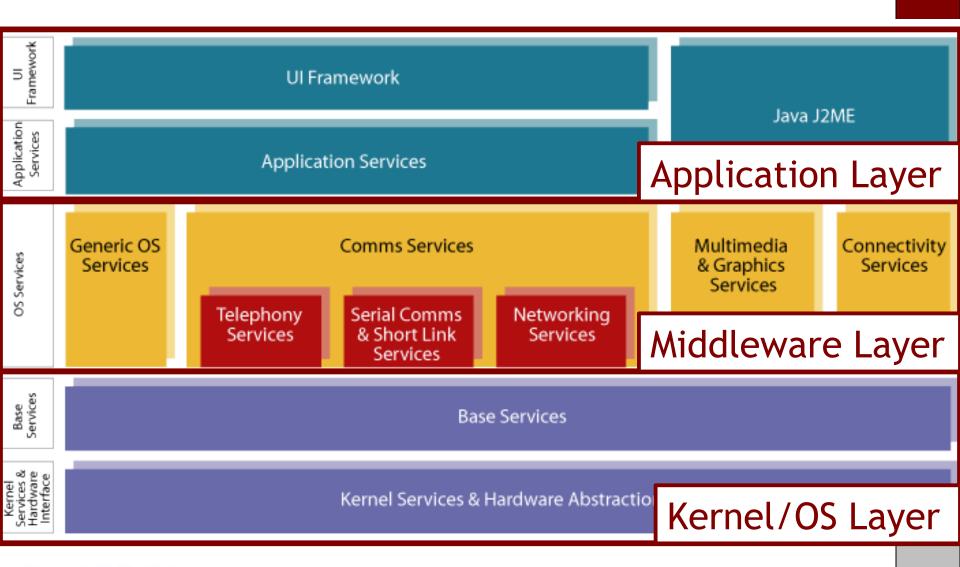
• 4th in device sales world-wide

Windows Phone

- Windows Phone is the push by Microsoft to become a major mobile OS player
 - Replaced Windows Mobile

 Incorporates many Microsoft services but also heavily integrated with other non-Microsoft ones

Just passed BB for 3rd place


OS Security Models

- Every OS is designed around a different user model, security model, and application model
- Security models are primarily built on that provided by the underlying OS / kernel
 - Android and iOS are built primarily on a Linux or Linux-like kernel
 - Windows Phone is built on the Windows NT kernel
 - Others are built on proprietary (micro)kernels

We've already heard a lot about Android, and we'll hear more on Monday.

Today, we'll focus on others.

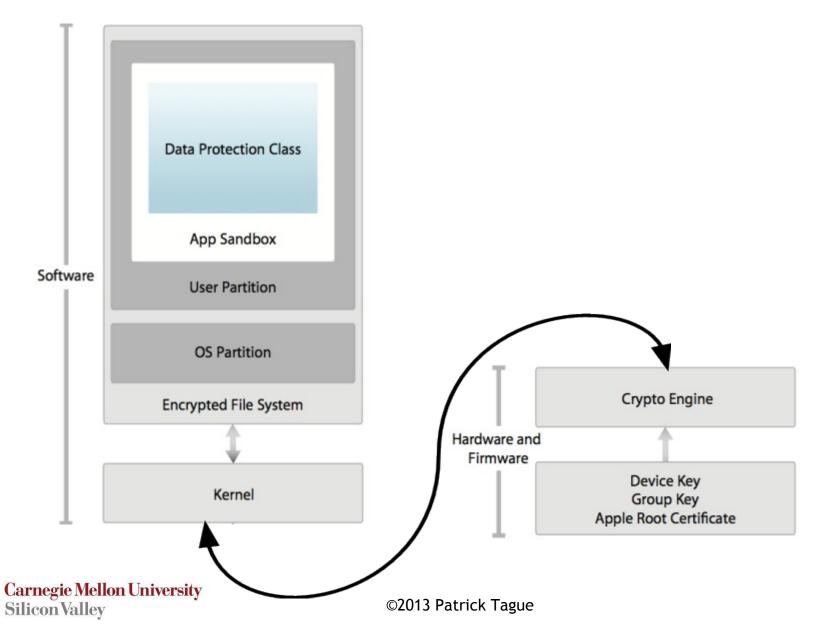
Symbian Model

Symbian Security Model

- The Symbian security model has three modules:
 - Trusted computing base
 - Data caging
 - Capabilities

Symbian TCB

- Symbian's Trusted Computing Base
 - Collection of software that enforces data caging and capabilities
 - Comprises the kernel, the file system, and the software installer
 - Controlling part of the OS in the security model


Symbian Data Caging

- Symbian Data Caging
 - Applications and users only have access to certain parts of the file system
 - Apps can access their own private repositories and any public repositories
 - Apps cannot access private content from any others

Symbian Capabilities

- Capabilities
 - A capability grants access to a set of APIs, obtained through certification
 - Types of capabilities:
 - Open to all
 - Granted by user at install time
 - Granted through Symbian Signed
 - Granted by manufacturer
 - Capability enforcement can be bypassed via firmware update (sort of like "jailbreaking")

iOS Model

iOS Security Model

 iOS's security model is based on OSX, a BSD / Unix-like OS

 Various levels of system, application, resource, network, data / storage, user, and physical protection

 Relies heavily on Unix-like users, processes, permissions, sandboxing, etc.

System Protections

- Sandboxed applications (same as OSX)
 - Protects OS from malware and certain malicious apps
- Code review and signing by Apple
 - Review process is still largely unclear, but rumors are that it provides more of a "warm fuzzy" protection than any sort of guarantee
 - **—** 3
- Multi-user system ("mobile" user, "root" user)
 - Mobile user can run application(s)
 - Root user runs processes
 - Jailbreaking gives root access

Resource Protections

- iOS APIs restrict access to certain resources
 - Bluetooth has no / limited API
 - Proximity sensor is unavailable
 - WiFi connection management is restricted
 - GPS system is carefully managed
 - Apple has a "kill switch" on GPS apps
- Other resources are (mostly) unrestricted
 - Microphone, camera, Internet, accelerometer
 - (This has been changing...)

Jailbreaking & Unlocking

Jailbreaking

- Modifying the application processor firmware to allow root access, running unsigned code, bypassing other restrictions, etc.
- Based on hacking / modifying the bootloader due to a development "flaw"

Unlocking

- Removing the carrier-restriction for which network the iPhone can connect to (e.g., leaving AT&T)
- Not as easy as jailbreaking (no dev "flaws"), but still possible via exploit of baseband software

BlackBerry

- Since 2003 BlackBerry has been touted as the most secure mobile OS
 - Designed on strong foundations of data security, user authentication, etc.
 - Features have causes BB to be embraced by corporations, government agencies, etc.
 - Even to the point that regulators in other countries were annoyed because they couldn't access or monitor user behavior for enforcement purposes

Secure Data Storage

- BlackBerry's security model heavily emphasizes secure data storage
 - All user data is encrypted using AES
 - Access to data requires users authentication
 - Failed authentication 10 times in a row results in all stored data being deleted

BB Password Keeper

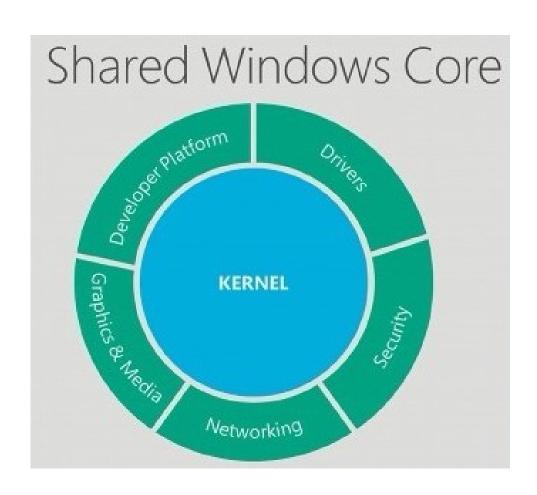
- BlackBerry also comes equipped with a password management app
 - Consolidates all of a user's passwords into a single encrypted repository, protected by a "master" password
 - Master password cannot be changed once set
 - Failed password entry 10 times in a row results in deletion of entire repository

Administrator Privileges

- An admin (probably a corporate IT admin) can remotely manage the BB device
 - Delete local data
 - Lock data storage
 - Change the device password

Wireless Data Security

- Data is encrypted from device to BB server using a secret user key
 - Both AES and 3DES are used


Access to corporate intranet using RSA SecurID

Advanced Security Features

- Advanced security features can be enabled for government use
 - Certain BlackBerry devices meet DoD standards
 - Federal Information Processing Standard 140-2 validation
 - Secure/Multipurpose Internet Mail Extensions
 - Public key infrastructure
 - Smart Card Reader

- BlackBerry 10 also includes:
 - Permission-based model for 3rd-party apps
 - Heavily restricts root access
 - ASLR

Windows Phone Model

Hardware

Windows Security Model

 Windows Phone security model is based on years of Windows experience and observations of issues in other platforms

- Considerations:
 - System integrity
 - App platform security
 - Data protection
 - Secure access

System Integrity

 Platform integrity assured through Trusted Boot and code signing

 Trusted Boot validates the firmware image, which is then responsible for validating and loading the OS

 Trusted Boot uses a standardized hardware root of trust (like a TPM)

App Platform Security

- Windows Phone 8 uses chambers for isolation
 - Chambers are much like sandboxes that are policydefined and control interaction between apps
 - Chamber policies are based on capabilities, much like Symbian; app permissions can be expanded using capabilities
- Apps are managed through Windows Phone store
 - Manages: certification/verification of apps, validation of developer, virus scanning, app signing
 - Updates are strictly managed by Microsoft, similar to other products

Data Protection

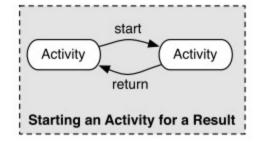
- Every Windows phone, regardless of mfgr, includes common mgmt and security controls
- Relies on Microsoft Exchange ActiveSync for mailbox sync, policy mgmt, password mgmt, and additional security features such as remote wiping of lost devices
- Internal storage is encrypted using BitLocker
- Only media can be stored on SD card, which is unencrypted (and can be disabled)

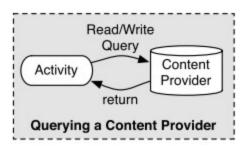
Secure Access

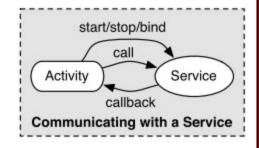
 Windows Phone 8 designed to heavily leverage cloud services

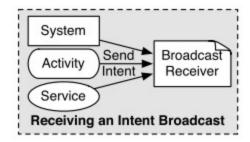
 Data sync between device and most cloud or local services requires SSL connection

All critical network traffic (including most 3rd-party and custom business apps) is encrypted using 128- or 256-bit AES

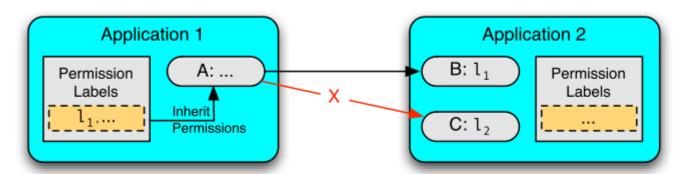

Android Security Model


- Android OS is built on top of Linux
 - Each application has its own uid
- Specialized middleware


Application interaction between different types


of components

- Activity
- Service
- Content provider
- Broadcast receiver



Inter-Component Communication

- Android uses intents for component signaling
- Android manifest file allows developers to define access control policies
 - Each component has an access permission label
 - Each app has a (fixed) list of permission labels

With some exceptions...

Slides adapted from [Enck & McDaniel, Penn State, 2009]

Rooting

- Almost all Android phones are root-able
 - Initially due to an exploit of the Android Debug Bridge (adb) tool, but many ways have emerged
- Rooting an Android phone gives arbitrary access to system
 - Modification of drivers, kernel, kernel modules, installed applications
 - Also opens up to system components developed by the "hacker community"
 - Improved/modified bootloaders, better backup utilities, enhanced drivers, apps, and services
 - Many of these have been adopted by the Android community

Summary

- There are many common themes across the mobile OSs
 - Fundamental similarities in OS and security models
 - Many similarities in use of permissions
 - Overall, most of the systems have similar flavors of security vulnerabilities
 - Android is more targeted because it's mostly open, so finding them is easier...for now.
- Despite the similarities, designs and implementations are wildly different

Oct 21:

Guest Lecture: Anmol Misra and Abhishek Dubey, Android Security