Mobile Security 14-829 - Fall 2013

Patrick Tague Class #9 - Location Services

Carnegie Mellon University Silicon Valley

Mobile Location

- Mobile location has become a critical element of smartphone usage
 - One of the major differentiators from laptops
 - Enables a wealth of new services (location-based services)
- How does it work?

Device Localization

- How does a device figure out its location?
 - Another device/system tells it
 - Ex: cell provider tells the device where it is
 - Another device/system provides reference points that allow it to estimate a location
 - Ex: GPS
 - It learns from a set of known landmarks
 - I just took a picture of the stature of liberty...where am I?
 - It figures it out using other information

Carnegie Mellon University Silicon Valley

Relative Localization

Each localizing device collects geometric relationships relative to several reference points (x_i, y_i)

Location from Cell Towers

Carnegie Mellon University Silicon Valley

Trilateration

- Requirements:
 - At least three reference points
 - Reference points with known location
 - Line-of-sight communication

More Trilateration

- GPS
- WiFi
- Bluetooth

You Mean Triangulation?

- Trilateration ← Using 3 or more distance measurements to identify a point
- Triangulation ← Uniquely defining a triangle from two angle measurements and a known length

Triangulation

- Requirements:
 - At least two angle measurements
 - At least one known distance
 - Ability to measure angle-of-arrival (not as easy as it sounds)
 - Line of sight

 a
 a

Carnegie Mellon University Silicon Valley

Triangulation v. Trilateration

- Trilateration
 - Transmitters: cell towers
 - Receivers: mobile phones
 - Positioning is done on the phone
 - Or measurements from phone, computation outsourced
- Triangulation
 - Transmitter: mobile phone
 - Receivers: cell towers
 - Positioning within the network
 - Requires special hardware on the tower

Carnegie Mellon University Silicon Valley

Fingerprinting

Wi-Fi Fingerprinting for indoor positioning

Fingerprinting

- Advantages
 - Resistant to multipath and attenuation
- Disadvantages
 - Requires data collection / site survey

Location from Sensors

- Many sensors on the phone can be helpful in determining location, especially due to mobility
- Dead reckoning
- Advantage:
 - Needs no infrastructure
- Disadvantage:
 - Error accumulates over time

Carnegie Mellon University Silicon Valley

Let's focus on GPS, arguably the most prominent location source for smartphones

GPS

- Global Position System was developed by the US DoD initially in the 1970s and completely operational in 1994
 - Similar to other systems deployed by Russia, EU, China, India, and others
- Satellites broadcast current time and location to allow any receiver on Earth to localize

Things using GPS

- GPS is used for:
 - Automobile navigation (and autonomous driving)
 - Mobile geo-location (for LBS, etc.)
 - Livestock / wildlife tracking
 - Aircraft and ship navigation and autopilot
 - Power grid synchronization
 - Financial transactions & trading
 - Telecom system operations

So, how does GPS actually work?

GPS Signals

- GPS satellites send several different signals
 - On the L1 band (1575.42 MHz), coarse-acquisition (C/A) signal, encrypted precision (P(Y)) signal, L1 civilian (L1C) and military (M) codes
 - On the L2 band (1227.60 MHz), P(Y) code, L2C and M
 - Three other bands (L3, L4, L5) used for other purposes
 - Nuclear detonation detection, atmospheric correction, civilian safety-of-life

Multilateration

- GPS satellites serve as mobile reference points for Earth-based receivers
 - All satellites have high-precision, tightly synchronized clocks and precisely known locations
 - Each receiver hears a coordinate and timestamp from each transmitter, measures the distance based on the transmission time

Carnegie Mellon University Silicon Valley

©2013 Patrick Tague

Dist d from (x_1, y_1)

- How to measure distance from the satellite?
- Well, distance = speed of light * time, so just measure time...

- Satellites themselves use atomic clocks to maintain ground truth
 - Receivers have to synchronize with the satellites
 - Remember, 1ns time error \rightarrow 1ft distance error
- With clever processing, an extra satellite signal provides required synchronization
 - 3 satellites for space, 4 for space+time

Carnegie Mellon University Silicon Valley

Errors

- Errors arise for many different reasons
 - Scattering through Earth's atmosphere, reflection off buildings, time sync errors, etc.

- Much of this can be handled by incorporating proper models in the distance estimation process
 - But, no longer just *distance* = *rate* * *time*
- Some receivers get diversity from using military & civilian signals

Carnegie Mellon University Silicon Valley

Military v. Civilian GPS

- Civilian GPS uses an unencrypted and unauthenticated signal for location and time synchronization
- Military GPS devices can be keyed to use an encrypted and authenticated signal for high assurance location and timing
 - Military GPS requires key management, often in the form of manually entering long keys into handsets
 - Use of the military signal can provide much higher accuracy, error correction, etc.

Military GPS Rumors

 Since manual key management is often an impediment to mission-critical activities, there have been reports that a large number of soldiers use GPS in civilian mode

Carnegie Mellon University Silicon Valley

Selective Availability

- When GPS was originally designed, it was intended to provide coarse-grained location for civilians and fine-grained location for military
 - Does anyone remember when GPS accuracy was 30-50 meters and that was good enough for most things?
- Selective Availability was eliminated around 2000 to provide higher accuracy for civilian applications
 - Usually, we can get ~10 meter accuracy

Differential GPS

- For applications that require even better accuracy
 - Differential GPS uses an additional signal sent from a ground station to compensate for errors in data sent by satellites
 - E.g., DGPS stations can send difference between location claimed by satellite and its observed location
 - Accuracy of ~10cm can be achieved using DGPS
 - Appropriate for autonomous / swarm vehicle applications

What are the possible security issues with GPS?

Jamming

- GPS is based on wireless communication, so it's subject to interference
- GPS signals can be as quiet as -160dBm (10⁻¹⁹W)
 - Jamming is pretty easy

Carnegie Mellon University Silicon Valley

Replay Attacks

- Replay of GPS transmissions would involve stale timestamps and location information
- The content of the message would be good
- But the time sync step would fail and most likely give unreasonable results
 - Unless the timing is precisely controlled...more in a minute

GPS Spoofing

- Instead of replaying old GPS signals, fabricate new ones and pretend to be a satellite
 - Spoofing leverages lack of authentication in civilian GPS signals
- Provides invalid information to the receiver to force it to compute an incorrect location
- Two types of spoofers have been demonstrated

GPS Simulator as Spoofer

- GPS simulators create valid-looking signals for testing purposes
- Why not use this as a spoofer?

Timed Replay as Spoofer

- Humphreys et al. built a spoofer (see [Humphreys et al., ION GNSS 2008])
 - It receives signals, analyzes them, and replays them after a precise delay
 - The delay affects the distance measurement, thereby affecting the location result
 - Precise control of delay allows gradual error accumulation or "drifting", so detection is difficult

Many More Attacks

- GPS receivers are also vulnerable to a number of signal- and software-based attacks
 - e.g., Middle-of-the-Earth attack
 - See [Nighswander et al., CCS 2012]

How could you protect against these GPS attacks / threats...

without replacing or upgrading the satellite systems?

Deployment Constraints

- Because of the deployment cost, upgrading or replacing satellites is not really an option
 - Maybe very slowly over time, but not any time soon
 - So authentication is out
- GPS receivers have to respect what the GPS transmitters are sending even if they cannot authenticate them

Alternatives

- Several defense / mitigation strategies have been proposed by the GNSS community
 - Modifying GPS receivers to use multiple antennas to verify angle of arrival consistency
 - Augment receiver software to compare changes in location over time
 - Incorporate sensor data (GPS says you're moving but gyro says you're not \rightarrow ?)
 - Incorporate other GNSS systems for diversity

Carnegie Mellon University Silicon Valley

What about Privacy?

- Location privacy is a huge problem
- We'll devote a class to it later in the semester

Sept 30: Guest Lecture: Jiang Zhu, Mobile Sensing and SenSec