Mobile Security 14-829 - Fall 2013

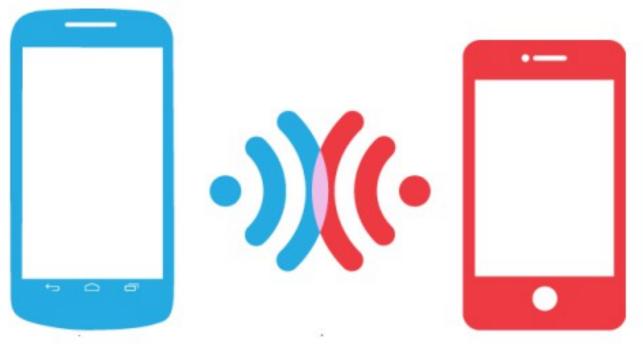
Patrick Tague Class #8 - NFC & Mobile Payment

Carnegie Mellon University Silicon Valley

In Case You Missed It...

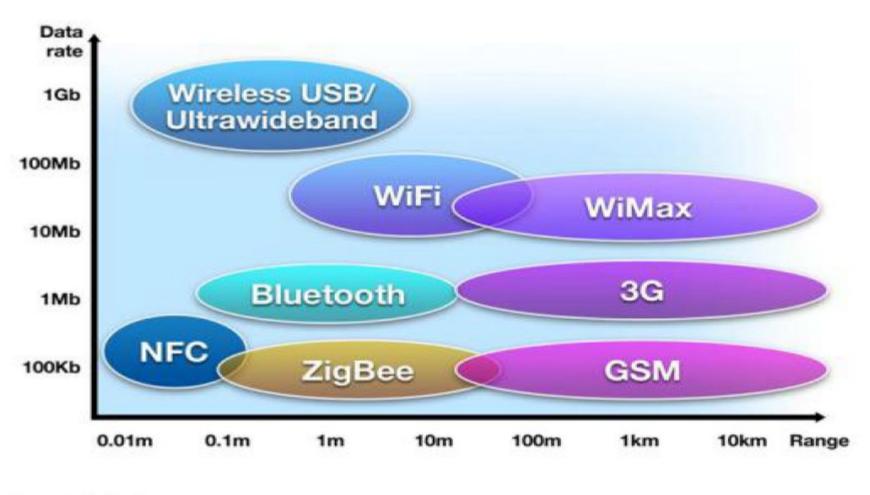
- If you were at the TOC last week and missed Wednesday's class:
 - Please watch the video to catch up on material
 - Early project deliverables were discussed
 - Please email me to sign up for your survey presentation (schedule on BB)

HW Clarification


- Common questions on Assignment #1
 - Q: Can I just request permission X, then use permission X to collect private information?
 - A: That's not stealing, that's asking. If you need to ask for a permission, there needs to be another reason to do so. In other words, hide the fact that you're stealing info.
 - **Q:** So, all we have to turn in is the application, right?
 - A: No. The assignment has two deliverables. Please read it again.

Android Phones

- For those in Pgh still waiting for phones:
 - Sorry for the delay.
 - Please update the spreadsheet to let us know if a tablet (e.g., Nexus 7) would suffice, or if a phone is needed. Email is ok, but direct doc edit is better.
 - Once everyone replies, I'll ship another box to Yuan.
- If you still haven't made a request in the doc, please do so immediately, else more delay.


Near Field Communication

 NFC is a short-range, low-rate wireless connectivity that enables communication between devices in close proximity without initiation

Carnegie Mellon University Silicon Valley

Wireless Comparison

Carnegie Mellon University

Silicon Valley

NFC Characteristics

- Uses 13.56MHz RF signal
- Communication over distances up to 4"
- Data transfer speeds of 106, 212, 424 kbps
- NFC chip/tag can store small amount of data (e.g., 96B, 512B tags)

Modes of Communication

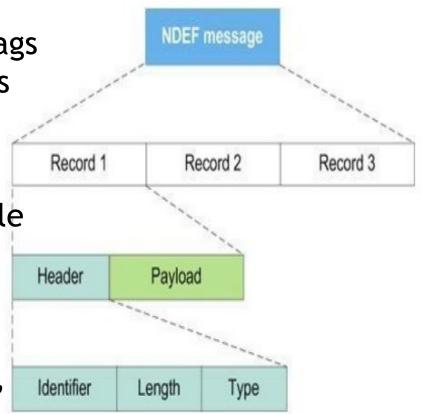
- Active Mode:
 - Initiator and target devices have power supplies and can communicate with each other by alternate signal transmission
 - Both parties use half duplex
- Passive Mode:
 - Initiator device generates a signal that the target observes and modulates data on
 - Initiator: full duplex

Carnegie Mellon University Silicon Valley

Modes of Interaction

- Reader/Writer:
 - Use an active NFC device to read/write a passive NFC tag
- Peer-to-Peer:
 - Active NFC devices interact with each other bidirectionally
- Card Emulation:
 - An NFC device takes the role of a passive NFC tag to be read by an active NFC device

Carnegie Mellon University Silicon Valley



NFC Comm Standards

- ISO/IEC 18092 / ECMA-340:
 - Standards for communication modes for NFC
 Interface and Protocol NFCIP-1 such as modulation schemes, coding, transfer speeds, frame format, collision control parameters, transport protocol
- ISO/IEC 21481 / ECMA-352:
 - Standards for NFCIP-2, specifies communications modes to minimize interference with other contactless card devices

NFC Data Standards

- NFC Data Exchange Format (NDEF)
 - Structure for writing data to tags or exchanging between devices
 - NFC tag contains 1+ NDEF messages
 - NDEF message contains multiple records
 - NDEF record contains header (type, ID, length) and payload (MIME, URL, NFC-specific type, etc.)

NFC Tag Standards

	Type 1	Type 2	Type 3	Type 4
ISO/IEC standard	14443 A	14443 A	JIS 6319-4	14443 A / B
Compatible Product	Innovision Topaz	NXP MIFARE	Sony FeliCa	NXP DESFire, SmartMX- JCOP,
Data rate	106 kb/s	106 kb/s	212, 424 kb/s	106/212/424 kb/s
Memory	96 bytes, expandable to 2 kbyte	48 bytes, expandable to 2 kbyte	Variable, max. 1Mbyte	Variable, max. 32 kbyte
Anti-collision	No	Yes	Yes	Yes

NFC Uses

Carnegie Mellon University Silicon Valley

NFC Security / Threats

- NFC is a wireless communication interface, so it adopts all of the standard wireless threats
 - Eavesdropping
 - Data corruption / modification / insertion
 - Man-in-the-middle attacks
- NFC Difference:
 - In active mode, both devices are full duplex so they can monitor while transmitting
 - In passive mode, the initiator is full duplex and the respondent/tag is half duplex

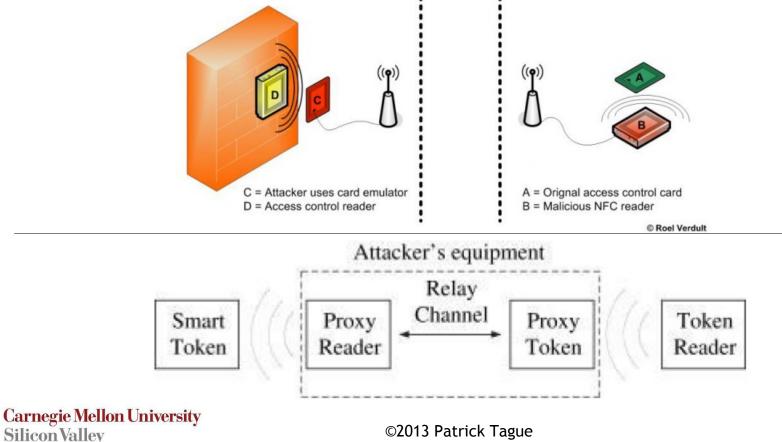
Eavesdropping

- NFC itself provides no explicit protection against eavesdropping
- Active-vs-Passive:
 - It's much harder to eavesdrop on passive exchange
 - Mainly because of range (<1m passive, <10m active), but also depends on environment, transmitter's RF field characteristics, quality of attacker antenna and decoder, setup location, ...

Data Corruption/Modification

- Attacker can attempt to modify bits in flight based on standardized encoding, e.g., high power pulses can flip 0s to 1s
- In full-duplex mode, this can be detected easily because the pulse needs to be high power
- Difficult to detect in half-duplex mode

Data Injection


- In a message-response mode, an attacker can inject data by responding faster than the intended target
 - Only works if intended target needs time to construct reply, otherwise messages will collide (\rightarrow DoS)
- Possible defenses:
 - Secure handshake w/ verifiable response

Man-in-the-Middle Attacks

- MitM is difficult in NFC due to:
 - Close proximity (MitM needs to be closer than tag)
 - Full duplex can detect some aspects
- But, what if the MitM attacker modifies the medium?
 - If the attacker blocks the original signal, it can create two sessions needed for MitM attack
 - Turns out that a large-ish sheet of aluminum or a few pieces of paper will block the signal...

NFC Relay Attack

- Modified version of the MitM attack
 - Proximity if assumed but not proven
 - Relay channel used to create two separate sessions

More NFC Issues

- Other than these basic wireless communication concerns, most other NFC security issues are scenario- or application-dependent
 - i.e., how NFC is used introduces vulnerabilities
 - Some apps using NFC don't correctly address basic concerns, which can open up additional issues
- Let's look at a couple special cases

Two Case Studies

Mobile Payment using NFC

• Smart Posters

Mobile Payment

- Mobile payment typically uses NFC to initiate the transaction, often using a handshake with the payee before the actual transaction
- Why use NFC?
 - Proximity makes it easier to verify payee
 - Simplifies the transaction process
 - Convenient: store all credentials inside the phone
 - Integrates with other mobile services: eBooks, music downloads, barcodes, etc.

Mobile Payment Systems

- Implementations vary
 - ISIS
 - Google Wallet
 - Paypal Here
 - Square

Google Wallet

- How to use Google Wallet (initially):
 - Add cards credentials to the app (offline)
 - Approach payment surface (POS terminal)
 - Open Google Wallet app
 - Input 4-digit PIN
 - Put phone very near payment surface

Behind Google Wallet

- NFC radio + "secure element"
 - Stores data / runs programs
 - Encrypted storage, separate from Android phone memory
- When card added, credentials locked in the secure element
- PIN unlocks secure element
- App serves as NFC-based tunnel between secure element and POS terminal

Silicon Valley

Google Wallet Vulnerability

- PIN Exposure Vulnerability, February 2012
 - Publicized by Zvelo
 - PIN hash stored on phone memory used to validate
 PIN and give access to secure element
 - SHA256 w/ 4-digit PIN \rightarrow 10,000 tries to brute force
 - Rooted phone can run Wallet Cracker app, unlock secure element in seconds
- Patched by Google
 - Hash now stored in secure element
 - Managed by banks, so PIN security is banks' responsibility, not Google's

Carnegie Mellon University Silicon Valley

Two Case Studies

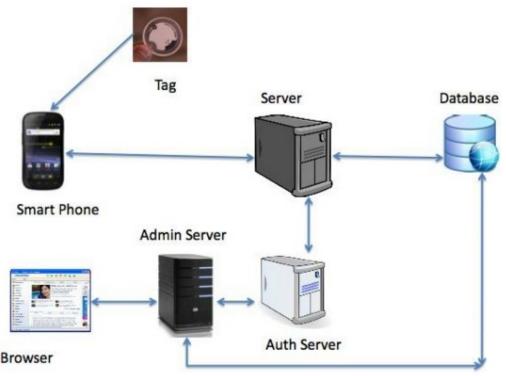
• Mobile Payment using NFC

• Smart Posters

Smart Posters

- A smart poster combines a standard visual display with user/mobile interaction and feedback relevant to the specific display, location, context, etc.
 - Achievable using NFC, QR code, ...
- In a typical deployment, program a small amount of content or a link on a tag, then stick the tag to the display

Smart Poster Issues


- What if someone reprograms a tag?
- What if someone removes a tag and sticks a new one in its place?
- What if someone covers a tag with a few sheets of paper then sticks a new one in its place?
- What if someone moves a tag to a different location?
- You get the point...it's really hard to protect tag contents, context, etc.

Challenges

- Very low data rate from tag to reader
- Very small data storage on tag
- Difficult to authenticate tag or validate contents without prior relationship with tag provider

Possible Solution

- S-SPAN: Secure Smart Posters w/ Android NFC
 - Instead of validating the tag or the data programmed on the tag, point the user to something they can validate. It shouldn't matter where the content is.

S-SPAN uses existing web-based mechanisms to validate tag contents, control access to contents, tag revocation / expiry, monitor usage, etc.

Carnegie Mellon University Silicon Valley

Sept 25: Location Services