Mobile Security 14-829 - Fall 2013

Patrick Tague Class #5 - WiFi Security Basics

Carnegie Mellon University Silicon Valley

What is WiFi?

- WiFi is a wireless LAN connectivity suite based on the 802.11 family of standards
 - WiFi (802.11a/b/g/n/...) provides lower-layer services (PHY, link/MAC) for host-AP connectivity

WiFi Physical Layer

- The WiFi PHY is responsible for transmission of raw bits/symbols between host and AP
- PHY has to manage transmission and reception, perform bit-to-symbol (and inverse) mappings, and bit-stream hand-off with layer 2

WiFi PHY Services

- Transmission and reception of symbols or bits
- Managing the radio interface:
 - Spectrum allocation, signal strength, bandwidth, phase synchronization, carrier sensing, etc.
- Signal processing:
 - Equalization, filtering, training, pulse shaping, etc.
- Modulation
- Coding (FEC, channel, etc.)

PHY Security Challenges

- How can we prevent a curious or malicious party from
 - eavesdropping on WiFi transmissions?
 - injecting messages at the link layer?
 - interfering with WiFi transmission and reception?

WiFi Link/MAC Layer

- The WiFi link layer is responsible for managing interaction between mobile terminal and AP
- Link layer has to manage:
 - Channel / link formation and management
 - Medium access ("MAC sublayer")
 - Network access control (NAC)

WiFi Link Security

- WiFi link security focuses primarily on access control and encryption
 - In private WiFi systems, access is controlled by a shared key, identity credentials, or proof of payment
 - Most often, authentication is of user/device only, but mutual authentication may be desired/required by some users/devices
 - Confidentiality and integrity over the wireless link
 - Shared medium among untrusted WiFi users

Carnegie Mellon University Silicon Valley

For now, let's assume everything is good at the PHY and MAC layers and focus on the WiFi link.

Subscription-Based Systems

WiFi Security

- WEP and WPA
 - Basics
 - Vulnerabilities
- 802.11i Robust Network Security

Wired Equivalent Privacy

- As name suggests, WEP aims to make the easy task of accessing WLAN much more difficult, as in wired
- WEP provides encryption and authentication
- Authentication is challenge-response to prove knowledge of a shared secret key
- Encryption is based on RC4 stream cipher using same key

WEP Authentication

- Challenge-response authentication w/ XOR
 - Issue 1: auth is not mutual
 - Issue 2: auth + enc use same secret key
 - Issue 3: auth only occurs on initial connection
 - Issue 4: RC4 w/ XOR
 - Attacker can obtain C and R = C XOR K, thereby getting K
 - Can authenticate in future sessions using same IV from R
 - Since secret key is shared, attacker can spoof anyone

WEP Integrity Protection

- Integrity protection is based on the Integrity Check Value (ICV) which is based on CRC
 - Encrypted message is (M || CRC(M)) XOR K
 - CRC is linear, i.e., CRC(X XOR Y) = CRC(X) XOR CRC(Y)
 - Uh oh...

 $\begin{array}{l} ((M \mid | CRC(M)) \times OR K) \times OR (\Delta M \mid | CRC(\Delta M)) \\ = ((M \times OR \Delta M) \mid | (CRC(M) \times OR CRC(\Delta M))) \times OR K \\ = ((M \times OR \Delta M) \mid | CRC(M \times OR \Delta M)) \times OR K \end{array}$

- Also, WEP doesn't provide replay protection

Carnegie Mellon University Silicon Valley

WEP Confidentiality

- Confidentiality is handled by the WEP IV
 - Issue 1: 24 bits \rightarrow IVs repeat every few hours per user
 - All users have the same secret key...
 - Issue 2: IV = 0; for each packet: IV++;
 - Pseudo-random sequences are same for every user
 - Attacker can inject messages on time
 - Issue 3: Inappropriate use of RC4
 - "Weak keys" as RC4 seeds allow inference of key bits
 - Experts: always throw away first 256B of RC4 output
 - WEP doesn't do this + small number IVs = weak keys encountered → attacker can recover entire secret key

So, how to solve the WEP problem?

RNS - IEEE 802.11i

- IEEE specification for Robust Network Security
 - Authentication and access control based on 802.1x
 - Integrity protection and confidentiality mechanisms based on AES to replace RC4

802.1x

- Authentication and access control standard
 - Designed for wired LAN, but extended to WLAN

©2013 Patrick Tague

Silicon Valley

N1 Interface

Supplicant

- Authenticator challenges Supplicant to provide authentication and prove authorization
- Confirm session key possession or allow provisioning
- Provide air interface security between Authenticator and Supplicant during initial NAC exchange

Carnegie Mellon University Silicon Valley

N2 Interface

Supplicant

- Supplicant provides credentials to Account Authority in a secure fashion to prove authentication and authorization for services, and AA provides responses
- AA provides key provisioning, if applicable
- Supplicant can verify the ID of the AA

Carnegie Mellon University Silicon Valley

N3 Interface

Authenticator \checkmark *N3* Account Auth.

- Allow secure communication between Authenticator and AA, including secure tunneling and routing of N2 interface messages
- Allow the AA to indicate whether access has been granted to the Supplicant
- Provision Authenticator session keys, if applicable

N4 Interface

- Secure on-going data traffic to network
- Notes:
 - Not strictly part of the NAC system, but part of the security architecture
 - Strictly, the interface is between the device and AP

NAC Protocols

- Protocols involved in NAC
 - Extensible Authentication Protocols (EAP)
 - End-to-end auth. between device and account authenticator
 - Supports a variety of client-server authentication methods
 - IEEE 802.1x (extended to 802.11i)
 - Carries EAP over the wireless LAN link (EAPoL) between device and AP
 - 802.11i requires session key per station, not in wired due to per-wire ports
 - Radius
 - Transports EAP between AP and account authenticator
 - Carries provisioned keys, etc. between AP and account authenticator

RNS Keys

- STA and AP share pairwise master key (PMK) used to derive pairwise transient key (PTK)
 - PTK = data encrypt key (DEK), data integrity key (DIK), key encrypt key (KEK), key integrity key (KIK)
 - Four-way handshake using nonces
 - AP sends nonce to STA, STA computes PTK
 - STA sends nonce and MIC using KIK to AP
 - AP computes PTK, verifies MIC, sends MIC + SN (for replay protection) to STA, ready
 - STA verifies MIC, ACK for ready

But, RC4 and AES are implemented in hardware, so WEP to RNS upgrade couldn't happen overnight

WiFi Protected Access

- Temporal Key Integrity Protocol
 - TKIP ← RNS using RC4 instead of AES
 - Immediate firmware upgrade allowed for use of TKIP
 - WPA is the subset of RNS supported through TKIP
 - Auth and access control in WPA and RNS are the same
 - Integrity and confidentiality are TKIP-based
- WPA2 = RNS
 - WPA2 still has some weaknesses
 - More on that next time

So, how do WiFi hotspots work without all this shared secret key business?

Hotspot Security

- How to bootstrap security?
- What about rogue hotspot APs?
- Left as an exercise for you to read about

What about the WiFi PHY & MAC layers?

Carnegie Mellon University Silicon Valley

- Structure of WiFi MAC allows for targeted jamming, cheating, and general misbehavior
- If you're interested, take 14814/18637 in S13

Sept 16: More WiFi Security & Privacy Issues

Carnegie Mellon University Silicon Valley