
Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes
Dimitrios-Georgios Akestoridis

Carnegie Mellon University
Moffett Field, California, USA

akestoridis@cmu.edu

Madhumitha Harishankar
Carnegie Mellon University
Moffett Field, California, USA

mharisha@cmu.edu

Michael Weber
Carnegie Mellon University
Moffett Field, California, USA

mikex@cmu.edu

Patrick Tague
Carnegie Mellon University
Moffett Field, California, USA

tague@cmu.edu

ABSTRACT
As the popularity of Internet-connected devices for residential use
increases, it is important to ensure that they meet appropriate secu-
rity goals, given that they interact with the physical world through
sensors and actuators. Zigbee is a wireless communication protocol
that is commonly used in smart home environments, which builds
on top of the IEEE 802.15.4 standard. In this work we present a
security analysis tool, called Zigator, that enables in-depth study of
Zigbee networks. In particular, we study the security consequences
of the design choice to disable MAC-layer security in centralized
Zigbee networks. We show that valuable information can be gained
from passive inspection of Zigbee traffic, including the identifica-
tion of certain encrypted NWK commands, which we then use to
develop selective jamming and spoofing attacks. An attacker may
launch these attacks in order to force the end user to factory reset
targeted devices and eventually expose the network key. We vali-
dated our attacks by setting up a testbed, using open-source tools,
that incorporates commercial Zigbee devices. Finally, we publicly
release the software tools that we developed and the Zigbee packets
that we captured, to contribute back to the research community.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Net-
works→Mobile and wireless security; Home networks; Mo-
bile ad hoc networks; Sensor networks.

KEYWORDS
Zigbee, IEEE 802.15.4, smart home, security analysis, jamming

ACM Reference Format:
Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber,
and Patrick Tague. 2020. Zigator: Analyzing the Security of Zigbee-Enabled
Smart Homes. In 13th ACM Conference on Security and Privacy in Wireless
andMobile Networks (WiSec ’20), July 8–10, 2020, Linz (Virtual Event), Austria.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3395351.3399363

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020,
Linz (Virtual Event), Austria, https://doi.org/10.1145/3395351.3399363.

Zigbee Network

E
thernet

U
SB

Zigator

Packet Analysis

Software-Defined
Radio

PHY Monitoring

IEEE 802.15.4
USB Adapter

Selective Jamming

1 2 3
4 5 6
7 8 9
* 0 #

Figure 1: Zigator analyzes captured Zigbee packets to enable
the development of selective jamming and spoofing attacks
with an IEEE 802.15.4 USB adapter, which we study by cap-
turing I/Q signals with a software-defined radio.

1 INTRODUCTION
Smart homes are an application of the Internet of Things (IoT) [3]
where everyday devices are connected to the Internet as either sen-
sors, actuators, or both. This level of connectivity enables residents
to monitor the state of their devices, issue commands to change
their states, as well as automate common tasks. Several commu-
nication protocols may operate concurrently in a smart home to
facilitate this, mainly because different devices have different re-
quirements, that are usually bridged by a smart hub. Some devices
require a high-data-rate connection to operate satisfactorily, while
others have relaxed throughput requirements so the focus is shifted
to low power consumption and low manufacturing cost. But along
with the benefits that smart home devices bring, they also raise
serious security concerns because they interact with the physical
world. Breaching the security of their communication protocols
can thus impact the physical security of the residents.

One of the most widely used communication protocols for IoT
devices, especially in smart home environments, is Zigbee [43].
The Zigbee protocol defines the upper layers of the IEEE 802.15.4
standard to provide low-data-rate wireless connectivity to low-cost
devices with low power consumption. The IEEE 802.15.4 standard
defines the PHY and MAC layers of the protocol stack, with home
automation being one of its main applications [9]. The operation of

https://doi.org/10.1145/3395351.3399363
https://doi.org/10.1145/3395351.3399363

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

SYNC Header PHY Header MAC Header NWK Header APS Header APS Payload MAC Footer

Defined by the
IEEE 802.15.4

standard

Defined by the
Zigbee Alliance

Defined by the
Zigbee Alliance

and Manufacturers

Defined by the
IEEE 802.15.4

standard

Figure 2: High-level view of a general Zigbee packet without any Auxiliary Header or any Message Integrity Code.

Zigbee networks is defined by the Zigbee Alliance, a group of com-
panies that also certifies Zigbee products which are supported by
numerous smart home ecosystems including Samsung SmartThings
and Amazon’s Echo Plus [42]. However, the Zigbee Alliance does
not impose security decisions on manufacturers [45, p. 442]. Fur-
thermore, Zigbee networks remain largely unmonitored in smart
homes. Hence, the development of comprehensive security analysis
tools is of paramount importance to independent researchers.

Several attacks have been demonstrated against Zigbee net-
works including device hijacking [23], a Zigbee worm [27], and,
more recently, remote code execution [10]. The aforementioned
demonstrations are, for the most part, limited to distributed Zig-
bee networks because they exploit vulnerabilities specific to the
distributed security model such as (a) the use of unsecured factory-
reset commands, (b) knowledge of a leaked encryption key under
non-disclosure agreement, and (c) the use of proximity-based com-
missioning. These are inherently absent in centralized Zigbee net-
works, where a single device takes the role of the Trust Center that
manages encryption keys and authorizes devices requesting to join
the network. Even though centralized Zigbee networks are recom-
mended for higher security [48], they have received less attention
from the research community, especially since Zigbee 3.0 devices
have been commercially available that address some prior vulnera-
bilities. To add to the challenge, there is a lack of robust security
analysis tools for Zigbee networks, commercial Zigbee devices use
closed-source software, and certain specification documents have
not been released to the public. Previous studies that incorporate
centralized Zigbee networks largely demonstrate information leak-
age from encrypted traffic [1, 17, 35, 41], such as the identification
of triggered events, without exploring how an attacker may use this
information to disrupt the operation of centralized Zigbee networks.
While several command injection attacks have been demonstrated
against centralized Zigbee networks [8, 21, 49], these attacks re-
quire knowledge of the network key. However, to the best of our
knowledge, realistic methods by which an attacker can acquire this
encryption key have not been thoroughly explored.

In this work we present a security analysis tool, called Zigator,
that we developed in order to study the exposure of Zigbee net-
works to passive and active attacks due to the design choice to
not utilize security services on the MAC layer. In fact, the Zigbee
PRO 2015 specification states that NWK commands should disable
MAC-layer security “since any secured frame originating from the
NWK layer shall use NWK layer security” [45, p. 269]. We show
that an attacker can infer valuable information from operational
Zigbee networks, including the logical device type of every Zigbee
device. In addition, despite the use of encryption on the NWK layer,
we show that an attacker can identify half of all possible NWK
commands with 100% accuracy. We use this information to develop

selective jamming and spoofing attacks that an attacker can launch
in order to eventually gain access to the network key. Furthermore,
we recommend security enhancements for the commissioning pro-
cess of Zigbee 3.0 networks to protect against this attack vector.
We validated our attacks by building a testbed, illustrated in Fig. 1,
that incorporates commercial Zigbee devices. We contribute to the
research community by publicly releasing Zigator, our dataset, and
our modifications to several open-source tools1. Note that even
though this work mainly focuses on centralized Zigbee networks,
some of our contributions can also be applied to distributed Zigbee
networks (e.g., the selective jammer described in Section 4.3).

The rest of this paper is organized as follows.We provide relevant
background information in Section 2 and delineate our threat model
and assumptions in Section 3. Section 4 details the instrumentation
of our testbed, while Section 5 presents an overview of Zigator. We
describe our experimental setup in Section 6 and report the results of
the passive and active attacks that we launched in Section 7. Finally,
we review related work in Section 8 and conclude in Section 9.

2 BACKGROUND
In this section we provide a brief overview of the packet format,
security models, and logical device types in Zigbee networks.

Packet format. The operation of Zigbee networks is defined
over multiple documents [18, 45–47], not all of which are publicly
available2. The general format of a Zigbee packet, without any
security features, is shown in Fig. 2. The actual format of Zigbee
packets highly varies because there are multiple packet types that
are identified using header fields from the Medium Access Control
(MAC), Network (NWK), and Application Support (APS) layers.
These packet types include MAC acknowledgments, MAC beacons,
MAC commands, NWK commands, APS acknowledgments, and
APS commands. Furthermore, the payload of the APS layer may be a
Zigbee Device Profile (ZDP) command or a, potentially proprietary,
Zigbee Cluster Library (ZCL) command. Additional identification
fields are used to further differentiate these commands and deter-
mine the format of their payloads. Zigbee provides security services
for packets on its NWK and APS layers by including an auxiliary
header after the header of the corresponding layer and a message
integrity code after its payload. Zigbee uses the CCM* block ci-
pher mode [45, p. 456] to encrypt the payload and authenticate the
header and payload of the corresponding layer using the AES-128
algorithm [24], according to the security level3 of the security con-
trol field [45, p. 425]. The CCM* mode extends the CCM mode [12]
by adding an encryption-only security level. However, the Zigbee

1Additional resources are available at http://mews.sv.cmu.edu/research/zigator/.
2For example, the Zigbee PRO 2017 specification has not been released to the public.
3Zigbee devices overwrite the security level with zeros before transmission, so the
receiver has to restore it for the decryption and verification process [45, pp. 381, 387].

http://mews.sv.cmu.edu/research/zigator/

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Alliance advises against the use of this security level [45, p. 425]
since it is vulnerable to a single-packet denial-of-service attack [30].
Thus, an implementation of AES-128 in CCM mode can decrypt
and verify typical Zigbee traffic. The nonce consists of the source’s
64-bit IEEE address, a 32-bit frame counter, and the 8-bit security
control field [45, p. 427]. The encryption key that is shared across all
devices in a Zigbee network is referred to as the network key, while
the encryption keys that are used only between pairs of devices
are referred to as link keys. The IEEE addresses of Zigbee devices
are referred to as their extended addresses, while their locally as-
signed addresses are referred to as their short addresses. Finally,
each Zigbee network uses a Personal Area Network Identifier (PAN
ID), which should be unique within its coverage area [45, p. 233].

Securitymodels. In order to provide a balance between security
and usability, Zigbee supports two security models: distributed
and centralized. Distributed Zigbee networks aim for ease of use
and consist of Zigbee Routers and Zigbee End Devices, with each
Zigbee Router being able to issue encryption keys. Centralized
Zigbee networks, which are recommended for higher security and
are the main focus of this work, include a Zigbee Coordinator that
typically takes the role of the Trust Center in order to manage
encryption keys and authorize devices that request to join the
network. Depending on the security model, different types of link
keys can protect the transportation of the network key [46, p. 30].

Logical device types. Zigbee Coordinators are typically mains-
powered devices that can form centralized networks but cannot
join other networks. Zigbee Routers are typically mains-powered
devices that can form distributed networks but can also join other
networks. Both of these logical device types can route packets
for other Zigbee devices. Zigbee End Devices are usually battery-
powered devices that cannot form either centralized or distributed
networks, but can join other networks. Zigbee End Devices usually
keep their receivers disabled when they are idle to conserve energy
and rely on the Zigbee Coordinator or a Zigbee Router for routing
services. A typical hardware device that operates as a Zigbee Coor-
dinator is the smart hub, which may provide access to the Internet
and other local networks. Examples of hardware devices that oper-
ate as Zigbee Routers include power outlets and light bulbs, while
door locks and motion sensors may operate as Zigbee End Devices.

3 THREAT MODEL AND ASSUMPTIONS
In keeping with standard security literature, we set the following
security objectives for Zigbee networks:

• Authenticity. Unauthorized devices should not be able to
impersonate authorized devices.

• Integrity. The devices should be able to detect and reject
tampered packets.

• Confidentiality. Unauthorized devices should not have ac-
cess to sensitive information.

• Availability.Networking services should be available to the
devices when they are needed.

We assume that the end user and their devices are trusted in the
sense that they do not deliberately downgrade the security of the
Zigbee network, with the physical security of the devices being
outside the scope of this work. The attacker is an outsider that may
utilize more powerful hardware than that of the network’s devices,

Time

Legitimate Packet

Jamming Signal

Spoofed Packet

Figure 3: An attacker may interfere with the transmission
of a legitimate packet and then inject a spoofed packet.

such as high-gain directional antennas and a laptop computer. We
assume that the attacker has no prior knowledge of any network
key, but they have knowledge of the default Trust Center link key
since it is publicly available [45, p. 377]. Additionally, we consider
the possibility of the attacker having access to a subset of install
codes, as we discuss in Section 7.3. Furthermore, we assume that the
attacker is not present during the initial formation of the Zigbee net-
work. If that were the case, violation of the aforementioned security
objectives is trivial as long as a single legacy Zigbee device exists
in the network or the install code of a Zigbee 3.0 device is known.
Finally, our discussions in the following sections assume that the
end user’s Zigbee network is using the centralized security model.
Note that we do not take into account Zigbee End Devices that
keep their receivers enabled when they are idle, low-power routers,
Green Power devices, or beacon-enabled networks. Although these
configurations are supported according to the Zigbee PRO 2015
specification [45], to the best of our knowledge, they are not widely
used in smart home environments at the time of writing.

Ultimately, the goal of the attacker is to obtain the network key
from an already formed Zigbee network. Currently, the security of
Zigbee-enabled smart homes depends heavily on its secrecy. An
attacker that gains access to the network key can decrypt most of
the encrypted payloads and inject commands that change the state
of the end user’s devices, violating our security objectives.

4 TESTBED INSTRUMENTATION
There are three core functionalities that we instrument in our
testbed to analyze the security of operational Zigbee networks:
(a) packet sniffing, (b) packet injection, and (c) packet jamming.
These form the building blocks for the development of more sophis-
ticated attacks. For example, as illustrated in Fig. 3, an attacker can
monitor Zigbee traffic until a packet of interest is being transmitted
in order to interfere with its transmission and then inject a spoofed
packet. We demonstrate such an attack at the end of this section.

4.1 Packet Sniffing
The most fundamental functionality that we require is the ability
to capture Zigbee packets. We used a USRP N210 [14] to capture
I/Q signals and perform demodulation in software. In particular,
we used GNU Radio [15] with the gr-ieee802-15-4 module [5] to
receive IEEE 802.15.4 packets and then store them in PCAP format
with the gr-foo module [4]. The main reason why we opted to use
a software-defined radio, instead of an IEEE 802.15.4 USB adapter, is
that it also allows us to analyze the effectiveness of packet jamming.

The resulting PCAP files were inspected using Wireshark [37],
which can decrypt encrypted payloads if the corresponding encryp-
tion keys are provided. However, there is no widespread use of a
suitable configuration profile. Certain header fields are vital for the

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

Figure 4: Captured packets during the rejoin process of a Zig-
bee 3.0 device, colored according to the rules of our Wire-
shark configuration profile. The text was slightly enlarged
and several columns were hidden due to space constraints.

understanding of communication flows, while coloring rules ease
the inspection process through the emerged patterns. To that end,
we developed a Wireshark configuration profile that is tailored for
Zigbee traffic4. For the coloring rules, we decided to group certain
packet types. For example, we grouped commands that affect the
membership and encryption keys of the devices (e.g., Association
Request, Rejoin Request, and Transport Key commands), while
Data Requests were colored uniquely because, as we describe in
Section 7.1, they provide valuable information about the logical
device types of their transmitters and receivers. Fig. 4 showcases a
few of these coloring rules in Wireshark’s packet list pane.

4.2 Packet Injection
The next required functionality is the injection of arbitrary packets.
Several header fields that are used in Zigbee packets have been im-
plemented in Scapy [33], which enables us to easily forge arbitrary
packets. Fig. 5 depicts a simplified GNU Radio Companion flow
graph that enables the reception and logging of IEEE 802.15.4 pack-
ets with one antenna and the transmission of forged IEEE 802.15.4
packets that are sent over a UDP connection with another antenna.
We release a collection of GNU Radio Companion flow graphs5 that
we used in order to conduct the experiments of this paper.

However, this approach is not suitable for the transmission of
time-critical packets due to the delay introduced by transferring
packets to the host machine and then back to the transceiver [31].
As a result, we modified the firmware of an ATUSB [25] in order to
transition from the receive state to the transmit state and send the
forged packet within the required time frame. For instance, a Zigbee
device that uses the O-QPSK PHY layer of the IEEE 802.15.4-2011
standard in the 2.4 GHz band will wait 864 microseconds to receive
a requested MAC acknowledgment [18, p. 129].

4.3 Packet Jamming
The third functionality that we need is the ability to interfere with
the transmission of legitimate packets. We reproduced Bloessl’s
implementation of a selective jammer [6], which selectively jams

4Available at https://github.com/akestoridis/wireshark-zigbee-profile.
5Available at https://github.com/akestoridis/grc-ieee802154.

UHD: USRP
Source

IEEE802.15.4
OQPSK PHY

rxin
txin

txout
rxout

UHD: USRP
Sink

Socket PDU

Wireshark
Connector

File Sink

Figure 5: A simplified GNU Radio Companion flow graph
that uses an implementation of the IEEE 802.15.4 O-QPSK
PHY layer [7] to transmit and receive Zigbee packets.

all packets that are destined for a specific device. However, this im-
plementation does not provide sufficient control over the jamming
condition to launch the attacks that we present in Section 7.3. To
this end, we modified the ATUSB firmware [26] as follows:

• Whenever an RX_START interrupt is detected, which is
issued typically 9 microseconds after a PHY header has been
received [2, p. 158], we retrieve the length of the packet that
we are receiving from the frame buffer.

• Then we wait for 32 microseconds, i.e. the time that it takes
for the transmission of a single byte [18, p. 163], and after
that we retrieve the next byte from the frame buffer6.

• We repeat the previous process until we can determine
whether the jamming condition is satisfied or not.

• If the jamming condition is satisfied, we force a transition
from the BUSY_RX state to the PLL_ON state, using the
FORCE_PLL_ON command, and then we transmit an arbi-
trary packet by transitioning to the BUSY_TX state, whose
length depends on the length of the receiving packet and the
number of bytes that we have processed.

• After that, we transition back to the RX_ON state and wait
for the next RX_START interrupt.

We also provide a visual description of our jammer’s behavior
in Fig. 6. Note that our implementation7 supports the definition
of arbitrary jamming conditions for the selective jammer, which
enabled us to launch our proof-of-concept attacks.

We provide Fig. 7, which shows the magnitude of a captured
I/Q signal, to demonstrate how selective jamming can be combined
with packet injection to launch more sophisticated attacks. The
jamming condition of this experiment was satisfied only for packets
of a specified network that request a MAC acknowledgment. In
order to be able to spoof a MAC acknowledgment after interfering
with the transmission of a legitimate packet, our jammer stored its
MAC sequence number when it was received. The jamming packet
was then transmitted, while the spoofed MAC acknowledgment
was transmitted shortly after the transmission of the legitimate
packet was completed. It is important to note that even though
Zigbee devices use secured APS acknowledgments to protect user
commands, MAC and NWK commands are still relying on unse-
cured MAC acknowledgments. We take advantage of this fact to
develop the attacks that we present in Section 7.3.

6This type of read access is supported by the AT86RF231 transceiver [2, p. 126].
7Available at https://github.com/akestoridis/atusb-attacks.

https://github.com/akestoridis/wireshark-zigbee-profile
https://github.com/akestoridis/grc-ieee802154
https://github.com/akestoridis/atusb-attacks

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Frame on Air
and Interrupts

Jammer’s State
and Actions

SHR PHR

RX_START

MPDU

Waiting for RX_START Checking Jamming Condition

. . .

Read 1 byte and then wait
32 µs to read the next byte

FORCE_PLL_ON
SLP_TR

Transmitting Jamming Packet

RX_ON

Waiting for RX_START

Time

Figure 6: Our selective jammer provides fine-grained control over the jamming condition by reading the bytes of a transmitted
packet as they are being received to determine whether it will be jammed or not before the completion of its transmission.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

M
a

g
n

it
u

d
e

Time (microseconds)

Figure 7: Captured I/Q signal during the selective jamming
of a Zigbee packet and injection of aMAC acknowledgment.

5 SECURITY ANALYSIS WITH ZIGATOR
In this section we provide an overview of Zigator, the software
tool that we developed in Python to analyze the security of Zigbee
networks8. Zigator’s main dependency is the Scapy library [33].
Specifically, Zigator uses the dot15d4 and zigbee layers of the
Scapy library to parse captured Zigbee packets and forge new ones
for injection. However, at the time of writing, several header fields
and frame types have not been implemented in the latest version
of Scapy (v2.4.3) that are vital to our research. Hence, we forked
Scapy and implemented these enhancements for Zigator9.

PyCryptodome [13] is another library that Zigator heavily uses.
After parsing the unencrypted header fields of an encrypted packet,
Zigator constructs the nonce and authenticated section of the packet
in order to decrypt and verify it using AES-128 in CCM mode. We
also used PyCryptodome’s implementation of AES-128 to imple-
ment the Matyas-Meyer-Oseas (MMO) hash function [22]. Since
Zigbee uses message digests of the same length as the block size of
AES-128 [45, p. 460], the message digest Ht of a bitstring x , that is
padded and divided into t 128-bit blocks, is computed iteratively as

Hi = EHi−1 (xi) ⊕ xi , 1 ≤ i ≤ t, (1)

where H0 = 0 and EK (·) denotes the encryption function of AES
parameterized by a 128-bit key K . The MMO hash function is used
in Zigbee 3.0 networks to derive the preconfigured Trust Center
link key of Zigbee 3.0 devices from their install codes [46, p. 75].
Furthermore, the MMO hash function is also used to define Zigbee’s
keyed-hash message authentication code (HMAC) [45, p. 461] to

8Available at https://github.com/akestoridis/zigator.
9Our changes have been submitted to Scapy’s GitHub repository as a pull request.

Figure 8: The commercial Zigbee devices that we studied.

derive the encryption key of certain APS-layer protected packets,
which has also been implemented in Zigator.

Zigator stores almost all possible header fields of the captured
packets in an SQLite database, along with other metadata and in-
ferred information that we discuss in Section 7.1. This approach
enables us to gain valuable insight into the nature of Zigbee traffic
because it allows us to execute detailed SQL queries. Zigator also
provides a feature-rich command-line interface, which allows the
security analyst to visualize their data as well as send forged pack-
ets for injection over UDP. In addition, Zigator can train decision
tree classifiers, using the Scikit-learn library [32], to distinguish
different packet types, which provided vital information for the
development of the generalized decision tree that we present in
Section 7.2. Subsequently, we present our experimental setup and
analyze the security of Zigbee networks using Zigator.

6 EXPERIMENTAL SETUP
We captured packets that were generated from ten commercial
Zigbee devices, shown in Fig. 8. We used the third generation of
the SmartThings Hub (IM6001-V3P01) as our Zigbee Coordinator
for half of our experiments, while the second generation of the
SmartThings Hub (STH-ETH-200) was used for the other half (see
Fig. 8j and 8i respectively). It should be noted that only the former
can commission Zigbee 3.0 devices using their install codes; the
latter uses the default Trust Center link key to commission them.
The Zigbee 3.0 devices that we used are a SmartThings Outlet
(IM6001-OTP01), a SmartThings Motion Sensor (IM6001-MTP01), a
SmartThings Smart Bulb, and a Schlage Connect Smart Deadbolt

https://github.com/akestoridis/zigator

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

Table 1: Number of different packet types in our dataset.

Packet Type Number of Packets

MAC Acknowledgment 215,371
MAC Beacon 2,182
MAC Command 97,971
NWK Command 77,176
APS Acknowledgment 55,080
APS Command 3,317
ZDP Command 47,153
ZCL Command 73,259

(see Fig. 8h, 8c, 8d, and 8a respectively). The remaining devices
are legacy Zigbee devices that use the default Trust Center link
key for their commissioning process. In particular, the legacy Zig-
bee devices that we used are a Centralite 3-Series Smart Outlet, a
SmartThings Motion Sensor (F-IRM-US-2), a SmartThings Multi-
purpose Sensor (F-MLT-US-2), and a Yale Assure Lock Touchscreen
Deadbolt (see Fig. 8g, 8b, 8e, and 8f respectively).

In order to study a representative sample of NWK commands, we
conducted eight experiments that we codenamed as H-T , where
H ∈ {sth2, sth3} and T ∈ {room, duos, house, trios}. We use
H = sth2 to refer to the experiments where the STH-ETH-200 hub
was used, while we useH = sth3 to refer to the experiments where
the IM6001-V3P01 hub was used. We use T = room to refer to the
experiments where the devices were placed in a single room, while
T = duos refers to the experiments where the Zigbee network
consisted of only a hub and one other device at a time. Furthermore,
T = house refers to the experiments where the devices were placed
in three different rooms. Finally, T = trios refers to the experi-
ments where the Zigbee network consisted of only a hub, a Zigbee
Router, and one other device at a time. For example, sth3-room
corresponds to the experiment where we used the IM6001-V3P01
hub and all the devices were placed in a single room.

Before the start of each experiment, we performed a factory re-
set on the hub. Next, we registered the hub using the SmartThings
smartphone application [28] to initialize our Zigbee network. Note
that the default configuration for both hubswas to disable automatic
firmware updates for Zigbee devices, while only the STH-ETH-200
hub accepted unsecured Rejoin Requests [34]. Our USRP N210 [14]
was continuously capturing IEEE 802.15.4 packets on the selected
channel. In order to collect a wide range of different NWK com-
mands, we performed multiple actions during each experiment that
included adding devices to our network, triggering sensors, issuing
commands to actuators, reassociating devices, powering off devices,
and causing PAN ID conflicts. We combined these actions to form
a procedure that was common across our eight experiments. A
detailed description of our procedure is included in our dataset,
which will be available on CRAWDAD [11]. Table 1 shows the
number of different packet types that we captured throughout our
experiments, which lasted about 34.644 hours in total.

7 RESULTS
In this section we demonstrate the consequences of disabled MAC-
layer security in centralized Zigbee networks. First, we show that

0x0000

0x7de1 0x68d7

0x2ffb

0x989f 0x957f

0x6231

0x14c9 0x822c

Figure 9: Example of an inferred topology from our dataset.

valuable information can be inferred from operational Zigbee net-
works, which we then use to develop a decision tree for the identi-
fication of encrypted NWK commands. Finally, we launch selective
jamming and spoofing attacks that force the end user to factory
reset one of their devices and eventually expose the network key.

7.1 Reconnaissance Attacks
An attacker can infer the topology of a Zigbee network in their
vicinity by logging distinct pairs of source and destination addresses
from MAC headers. For example, Fig. 9 was generated by observing
the addressing fields of MAC Data packets with PAN ID 0xd9b1
during the sth2-house experiment. While identifying the Zigbee
Coordinator is trivial, since it always uses 0x0000 as its short ad-
dress [45, p. 325], the topology alone is not sufficient to determine
the logical device type of all the devices with absolute certainty.

Identifying logical device types actively. We can identify
Zigbee Routers by exploiting the fact that only Zigbee Routers and
the Zigbee Coordinator respond to Beacon Requests. By injecting a
Beacon Request and then observing which devices responded with
a beacon, the attacker can identify all Zigbee Routers that are within
communication range. Recall that Zigbee devices do not utilize any
security services on the MAC layer, meaning that an attacker can
spoof any of the MAC commands shown in Table 2. To verify that
the non-responding devices are indeed Zigbee End Devices, the
attacker can spoof an Orphan Notification for a potential Zigbee
End Device so that, if it is indeed a Zigbee End Device, its parent
will respond with a Coordinator Realignment. We validated both of
these attacks using our testbed without observing any side effects
on the normal operation of the network. Note that during our exper-
iments, even though only legacy Zigbee End Devices transmitted
Orphan Notifications, all Zigbee Routers and Zigbee Coordinators
responded with Coordinator Realignments regardless of whether
the supposedly orphaned device was a legacy or a Zigbee 3.0 device.

Matching short and extended addresses.While the attacker
does not have to impersonate another device to inject a valid Beacon
Request, the attacker needs the device’s extended address in order
to successfully spoof an Orphan Notification. Nevertheless, the
attacker can acquire this information by inspecting Zigbee traffic
passively. Unlike the addressing fields of the MAC header (where
either the short address, the extended address, or no address is used
for the source and the destination fields of the packet [18, p. 57]),
the addressing fields of the NWK header always include both short
addresses and they may also include the corresponding extended
addresses [45, p. 263]. In fact, every NWK command is required to
include the extended address of its source [45, p. 269]. The extended

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 2: Number of differentMAC commands in our dataset.

MAC Command Name Number of Packets

Association Request 223
Association Response 246
Data Request 95,198
Orphan Notification 121
Beacon Request 2,044
Coordinator Realignment 139

address of the destination is also included when it is known and the
NWK command is not being broadcasted. In addition, every packet
that utilizes NWK-layer security services is required to include the
transmitter’s extended address in the auxiliary header [45, p. 381],
which will match with the short address of the source in the MAC
header. SinceMAC-layer security is disabled on Zigbee networks, all
of these header fields are transmitted unencrypted. Thus, a passive
attacker can match extended addresses with short addresses and
vice versa simply by inspecting MAC Data packets.

Identifying logical device types passively. As we described
at the beginning of this subsection, the Zigbee Coordinator can be
identified without injecting any packet. An attacker would ideally
like to be able to identify Zigbee Routers and Zigbee End Devices
passively as well. This would require the observation of packets
that are known to be transmitted (or received) either only by Zig-
bee Routers or only by Zigbee End Devices. Indeed, a Zigbee End
Device will periodically transmit Data Requests to its parent in
order to poll for pending packets [45, p. 201]. Caution is needed
during the inspection of Data Requests because Zigbee Routers
are also using them when they join the network [18, p. 32]; how-
ever, the source of the Data Request will use its extended address
in this case [45, p. 488]. After a successful association, the source
of the Data Request will use its short address to poll for pending
packets [18, p. 71]. As we would expect, whenever the source ad-
dress of a Data Request was a short address, it was transmitted by
a Zigbee End Device throughout our experiments. Note that the
attacker can use Data Requests to passively identify Zigbee Routers
as well, since only Zigbee Routers and the Zigbee Coordinator are
the recipients of these packets. However, in order to identify Zigbee
Routers that do not have any children, the attacker will have to
observe packets that are transmitted only by Zigbee Routers. There
are MAC commands that could be used for this purpose, but they
are not transmitted regularly. Hence, we turn to NWK commands
(shown in Table 3). Indeed, the Zigbee Coordinator and all Zigbee
Routers are periodically transmitting Link Status commands [45,
p. 343]. Even though the NWK Command Identifier field is typi-
cally encrypted, an attacker can distinguish Link Status commands
from other packets by inspecting some of their unencrypted header
fields, as we show in Section 7.2. Thus, it is possible for a passive
attacker to infer the logical device type of every Zigbee device.

Identifying hardware devices. The extended address of a de-
vice corresponds to a unique 64-bit IEEE address [18, p. 57], which
contains an organizational identifier [20]. Since the Zigbee Alliance
maintains a publicly available registry of certified Zigbee prod-
ucts [44], an attacker may attempt to identify the hardware device

Table 3: Number of differentNWKcommands in our dataset.

NWK Command Name Number of Packets

Route Request 22,191
Route Reply 1,614
Network Status 10,389
Leave 340
Route Record 24,475
Rejoin Request 316
Rejoin Response 320
Link Status 16,305
Network Report 624
Network Update 371
End Device Timeout Request 141
End Device Timeout Response 90

from which the observed traffic is generated by using its organiza-
tion name as a search keyword on that registry. In addition, smart
hub vendors typically publish similar lists of supported devices
(e.g., the “Works with SmartThings” webpage [29]), which can also
be utilized if the vendor of the smart hub can be identified. The
list of possible hardware devices can be further narrowed down by
taking into account the logical device type that the attacker inferred
for that device. For example, the extended address of the Smart-
Things Outlet (IM6001-OTP01) that we used in our experiments
is 28:6d:97:00:01:09:4b:c8, with its organizational identifier
being 0x286d97, which is assigned to SAMJIN Co., Ltd. [19]. At
the time of writing, a search for that organization on the Zigbee
Alliance’s registry returns five certified Zigbee products. However,
only one of these products is used as a Zigbee Router, which indeed
matches our device. It is important to note that other organizational
identifiers did not yield results that were as conclusive, because
they corresponded to System-on-Chip (SoC) manufacturers whose
products are found in a wide range of Zigbee devices.

Identifying legacy Zigbee devices. The attacker is interested
in distinguishing legacy Zigbee devices from Zigbee 3.0 devices, es-
pecially in Zigbee 3.0 networks, because the former use the default
Trust Center link key to join a network, which makes them poten-
tial targets for attacks as we explain in Section 7.3. The registry of
certified Zigbee products provides this information, assuming that
the attacker was able to identify the hardware device. For example,
currently all certified Zigbee products by SAMJIN Co., Ltd. are Zig-
bee 3.0 devices. Additionally, we observed that in our experiments
only Zigbee 3.0 devices transmitted End Device Timeout Requests.
When this NWK command is transmitted, its parent is expected to
transmit an End Device Timeout Response. However, this pair of
NWK commands was introduced in the Zigbee PRO 2015 specifi-
cation, so it is not supported by several legacy Zigbee devices [45,
p. 363]. The attacker can make Zigbee End Devices rejoin their
network by causing a PAN ID conflict, described in Section 7.3, in
order to observe which ones transmitted an End Device Timeout
Request and which parents responded with an End Device Timeout
Response. As we show in the following subsection, the attacker can
identify these NWK commands with 100% accuracy, even though
their NWK Command Identifier field is transmitted encrypted.

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

Table 4: Sets of possible feature values for the identification of encrypted NWK commands. We denote logical device types
with their initials, while the feature values that were observed in our dataset are in boldface. It should be noted that some of
the feature values in the last two columns are not explicitly stated in the Zigbee PRO 2015 specification.

NWK Command Name Payload Length (bytes) Radius† NWK Destination Type NWK Source Type

Route Request {555,131313} {2d2d2d,2d − 12d − 12d − 1, . . . } {0xfffc} {ZC,ZR,ZED}

Route Reply {7, 15,232323} {2d2d2d,2d − 12d − 12d − 1, . . . } {ZC,ZR} {ZC,ZR}
Network Status {1,333} {2d2d2d,2d − 12d − 12d − 1, . . . } {ZC,ZR,ZED, 0xfffd} {ZC,ZR,ZED}
Leave {111} {111} {ZC,ZR,ZED, 0xfffd} {ZC,ZR,ZED}

Route Record {111,333,555, . . . } {2d2d2d,2d − 12d − 12d − 1, . . . } {ZC,ZR} {ZC,ZR,ZED}

Rejoin Request {111} {111} {ZC,ZR} {ZR,ZED}

Rejoin Response {333} {111} {ZR,ZED} {ZC,ZR}
Link Status {111,444,777, . . . } {111} {0xfffc} {ZC,ZR}
Network Report {111111, 13, 15, . . . } {2d2d2d,2d − 12d − 12d − 1, . . . } {ZC}‡ {ZR}‡

Network Update {121212} {2d2d2d,2d − 12d − 12d − 1, . . . } {0xffff} {ZC}‡

End Device Timeout Request {222} {111} {ZC,ZR} {ZED}

End Device Timeout Response {222} {111} {ZED} {ZC,ZR}
†The radius is the number of hops that a Zigbee packet is allowed to make [45, p. 221], while we use d to denote the maximum depth of the Zigbee network.
‡We assume that the Zigbee Coordinator has been designated as the network manager, which is the default configuration [45, p. 297].

7.2 Identification of NWK Commands
It should be clear that the attacker would benefit significantly from
having the ability to identify encrypted NWK commands. While the
NWK Frame Type field is always transmitted unencrypted, since
it is part of the NWK header and MAC-layer security is disabled,
the NWK Command Identifier field is typically encrypted because
it is part of the NWK payload. Hence, a passive observer can dis-
tinguish NWK commands from other packet types, but not which
NWK command it actually is. We constructed Table 4, which con-
tains sets of possible values for four features that could be used
for the classification of encrypted NWK commands. The values of
the Payload Length and Radius columns were based on the require-
ments of the Zigbee PRO 2015 specification [45, p. 269]. However,
the specification does not explicitly state the possible types of the
NWK destination and source address fields for all NWK commands.
As a result, some of the values in these two columns are based on
our understanding of the specification, the experiments that we
conducted, and the assumptions that we made in Section 3. Notice
that the payload length varies significantly between different NWK
commands, while half of them are limited to single-hop transmis-
sions. Furthermore, notice that certain NWK commands are limited
to only certain NWK destination and source types.

Since the length of the MAC protocol data unit (MPDU) is in-
cluded in the PHY header [18, p. 160] and all header fields that affect
its expected length are transmitted unencrypted (e.g., whether the
extended address of the NWK destination is present or not), the
attacker can compute the payload length of NWK commands as
they are being transmitted. The Radius field, which indicates how
many hops a packet can perform, is transmitted unencrypted as
well. Note that even though the Radius field of multi-hop commands
may reach a value of 1, we can still distinguish them from single-
hop commands by comparing the addressing fields in the MAC
and NWK headers to determine whether the packet has traversed
the network or not. The NWK destination and source types can be
inferred using the methods that we presented in Section 7.1. Using

12 bytes 2 bytes Other

ZED Other

Payload Length

Network Update NWK Destination Type Decision Tree
Continues

End Device
Timeout Response

End Device
Timeout Request

Figure 10: Partial depiction of our decision tree that shows
how to identify three NWK commands with 100% accuracy.

just these features we can construct a decision tree that can identify
6 out of the 12 possible NWK commands with 100% accuracy. The
remaining NWK commands may reach an impure leaf node that
represents either two or three possibilities for their identification.

We now describe our derived decision rules that achieve 100%
accuracy10. From Table 4, we observe that only End Device Timeout
Request and Response commands can have a payload length of 2
bytes. Furthermore, the source of an End Device Timeout Request
command is always a Zigbee End Device and the destination is
either the Zigbee Coordinator or a Zigbee Router, while this pattern
is reversed for an End Device Timeout Response command. Thus,
we can distinguish these two NWK commands from each other by
taking into account the NWK destination type. This is depicted in
the partial decision tree that we provide in Fig. 10. Next, as we can
see in Table 4, the Link Status and the Route Request commands
are the only NWK commands that are being broadcasted to all
Zigbee Routers and the Zigbee Coordinator (denoted by the 0xfffc
broadcast address [45, p. 354]). These can be distinguished based on
whether they are a single-hop NWK command or not. In addition,
notice that Link Status commands are being transmitted only by
Zigbee Routers and the Zigbee Coordinator, but we did not have to
rely on this fact in order to identify them as Link Status commands.
10The remaining rules can be derived from the decision tree shown in Appendix A.

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Thus, as we mentioned in Section 7.1, a passive attacker can identify
Zigbee Routers through the detection of Link Status commands. We
can also identify Network Update and Rejoin Response commands
with 100% accuracy, which we discuss in the following subsection
in the context of the attacks that we launched.

7.3 Key-Transport Attacks
Security researchers have been aware that the transportation of
the network key to new devices may not be sufficiently protected
since early versions of the Zigbee protocol [39], resulting in “a brief
moment of vulnerability” [45, p. 376]. Regarding legacy Zigbee net-
works, Zillner and Strobl suggested that an attacker could trick the
end user to factory reset one of their Zigbee devices using jamming
techniques, essentially extending the time frame of the vulnerabil-
ity [49]. However, a Zigbee 3.0 device can join a Zigbee 3.0 network
using an install code, which is used to derive a preconfigured Trust
Center link key that is device-specific and transferred to the Trust
Center over an out-of-band communication channel in order to
encrypt the Zigbee packet that will transport the network key to
the new device [46, p. 73]. We now study the effectiveness of this
strategy in overcoming the network key leakage vulnerability.

Assessing the commissioning of Zigbee 3.0 devices. The in-
stall codes of the Zigbee 3.0 devices that we purchased were found
on the devices and inside their boxes, while additional stickers
were provided for the light bulb. To add a Zigbee 3.0 device to our
Zigbee 3.0 network, we scanned its QR code with our smartphone,
as shown in Fig. 11a. An option to add a Zigbee 3.0 device without
scanning its QR code was provided, which displayed the message
shown in Fig. 11b when selected. In that case, the Zigbee Coordina-
tor used the default Trust Center link key to encrypt the Transport
Key command. Assuming that unsecured Rejoin Requests are not
accepted [34], the attacker’s main strategy for obtaining the net-
work key is to launch a denial-of-service attack that would force the
end user to factory reset a device that uses a known Trust Center
link key to join the network. The attacker could approach this task
by identifying and targeting legacy Zigbee devices. Alternatively,
the attacker could target a Zigbee 3.0 device if they can gain access
to its install code, which could be leaked if its QR code is visible to
the attacker, if the end user did not dispose the device’s box securely,
or if the device was previously owned by a different user. The QR
codes of our Zigbee 3.0 devices also contained the extended address
of their corresponding devices, which the attacker could then easily
identify using the methods described in Section 7.1. If the attacker
was able to gain access to an install code, they may be more likely to
obtain the network key by targeting only the corresponding Zigbee
3.0 device because the end user may not consider the possibility of
its install code being leaked and factory reset it without hesitation.

Forcing the factory reset of a device. The attacker would
ideally like to minimize the number of packets that they have to
jam in order to force the factory reset of a device. We realize that
this can be achieved by causing PAN ID conflicts. The injection
of a forged beacon, that uses the same PAN ID as the end user’s
Zigbee network but with a different Extended PAN ID (EPID)11, is
sufficient to initiate the PAN ID conflict resolution process. Each
Zigbee Router that received the forged beacon informs the network

11Zigbee devices transmit the EPID of their network in their beacons unencrypted.

(a) (b)

Figure 11: Screenshots from the SmartThings smartphone
application [28] that show (a) the commissioning of a Zig-
bee 3.0 device by scanning its QR code and (b) the warning
message that is displayed when a user tries to skip this step.

manager, which is typically the Zigbee Coordinator [45, p. 297],
with the Network Report command. The network manager then
selects a new PAN ID and broadcasts it to all devices in the network
with the Network Update command [45, p. 333]. Shortly after the
transmission of the Network Update command, the network man-
ager and all the devices that received it switch to the new PAN ID.
Zigbee End Devices may not receive the Network Update command
before the PAN ID changes, in which case they try to rejoin the net-
work [45, p. 450]. Thus, if the attacker selectively jams the Network
Update commands issued by the network manager, some devices
will not switch to the new PAN ID automatically. As we mentioned
in Section 7.2, the attacker can identify Network Update commands
because they are the only NWK commands that can have a payload
length of 12 bytes. Rejoin Responses can also be identified because
they are the only NWK commands that can have a payload length
of 3 bytes and are limited to a single-hop transmission. However,
during our experiments we observed that even if we jam all Re-
join Responses, some devices were still able to rejoin the network
with the new PAN ID. To keep a device disconnected, we had to
selectively jam the updated beacons to prevent the device from
updating its PAN ID. We also observed that Zigbee End Devices
did not initiate the rejoin process as expected if we spoofed MAC
acknowledgments for their Data Requests after a PAN ID conflict.
Launching these denial-of-service attacks leads to the following
outcomes: (a) the end user will be unable to change the state of
their affected actuators, (b) if an affected sensor detects an event
it will be unable to inform the end user, and (c) automation rules
that depend on affected devices will not function properly. If the
attacker successfully targets a Zigbee device that uses a known
Trust Center link key and the end user decides to factory reset it,
then the attacker can gain access to the network key by sniffing and
decrypting the Transport Key command during its commissioning
process. Then, the attacker can decrypt most of the encrypted pay-
loads and inject commands that change the state of the end user’s
devices, including Zigbee 3.0 devices that use install codes.

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

Unexpected behaviors. We launched the aforementioned at-
tacks by modifying the firmware of our ATUSB [25]. We observed
some unexpected behaviors from our Zigbee Routers when they
failed to receive Network Update commands. While the Smart-
Things Outlet (IM6001-OTP01) initiated the rejoin process rela-
tively shortly after it determined that it cannot reach the Zigbee
Coordinator anymore, the Centralite 3-Series Smart Outlet initi-
ated that process after about 25 minutes. This behavior can also be
observed in our dataset. More interestingly, the SmartThings Smart
Bulb did not initiate the rejoin process like the smart outlets for up
to the 38 hours that we monitored it. This seems to be a firmware
issue since the Centralite outlet is a legacy Zigbee device while the
SmartThings bulb is a Zigbee 3.0 device. We note that such behavior
benefits the attacker because they will have to jam less packets than
expected. Given the large number of certified Zigbee devices, it is
unknown how many do not initiate or significantly delay the rejoin
process when they fail to receive the Network Update command.

Responsible disclosure.We reported our findings to the Zig-
bee Alliance, whose validity was confirmed by one of their repre-
sentatives. They stated that they were aware of PAN ID conflict
attacks and that they have implemented specification changes that
will prevent malicious PAN ID changes. Regarding our selective
jamming of Network Update commands, they commented that PAN
ID changes may be missed even in non-malicious scenarios and
that, as a result, future specifications will require a more aggressive
algorithm. They also argued that it is difficult for the network key
to be leaked from Zigbee 3.0 devices. However, since legacy Zigbee
devices are still available on the market and consumers may not
have replaced all of them with Zigbee 3.0 devices, we argue that
key-transport attacks can still be launched in the wild.

Security enhancements.We argue that the security of the com-
missioning process would improve significantly if the Trust Center
link key was reconfigurable over an out-of-band communication
channel. In particular, this encryption key could be different when-
ever a device tries to join a new network and be transported over
NFC. Given that smart home ecosystems like SmartThings already
rely on a smartphone application for users to add devices to their
Zigbee networks, the use of NFC should not impact usability in any
significant way. However, the manufacturing cost of the devices
may increase due to the additional hardware required. Finally, the
end users should be made aware of the security risks that the use
of a legacy Zigbee device would introduce to their networks.

8 RELATEDWORK
Several researchers have demonstrated information leakage from
Zigbee-enabled smart homes. Acar et al. inferred user activities
by creating traffic profiles and relying on traffic rate variations to
detect device state changes [1]. Zhang et al. extracted fingerprints
for several event types in order to detect misbehaving smart home
applications [41]. Trimananda et al. were able to infer events re-
lated to Zigbee devices by identifying packet-level signatures from
the Wi-Fi and Ethernet traffic that the smartphone and smart hub
generated in order to communicate with cloud servers [35]. Gu
et al. extracted event fingerprints in order to detect anomalies in
smart home applications and discover hidden vulnerabilities [17].
A common characteristic in these studies is that they followed

protocol-agnostic approaches in order to be applicable to a wide
range of smart home devices. In contrast, we focus on Zigbee de-
vices and rely on the inspection of multiple header fields in order
to infer information that enables us to launch disruptive attacks.

Zillner and Strobl argued that an attacker can gain access to
the network key of a centralized legacy Zigbee network by utiliz-
ing jamming techniques in order to trick the end user to factory
reset one of their Zigbee devices [49]. However, their demonstra-
tion included only a constant jammer, whose detection is relatively
easy [40]. Alternatively, an attacker could jam packets reactively.
Wilhelm et al. implemented a reactive jammer by programming
the FPGA of a software-defined radio [36], while Wood et al. imple-
mented one on the microcontroller of an IEEE 802.15.4 device [38].
Nevertheless, more sophisticated attacks are made feasible if the
attacker can jam packets selectively. Bloessl demonstrated that
low-cost selective jammers can be realized by programming a mi-
crocontroller with an IEEE 802.15.4 transceiver [6]. While Bloessl’s
implementation selectively jams all packets destined for a specific
device, the implementation that we present supports the definition
of arbitrary jamming conditions. Our implementation enables us to
selectively jam packets and then inject forged MAC acknowledg-
ments, as Sastry and Wagner described [30]. We show that, due to
the lack of MAC-layer security in Zigbee networks, an attacker can
easily identify and selectively jam certain NWK commands.

Goodspeed et al. extended Scapy to dissect and forge several
packet types of IEEE 802.15.4-based networks [16]. Support for
more packet types was added over time, which enabled researchers
to launch command injection attacks against centralized Zigbee
networks when the network key is known [8, 21, 49]. We further
extend Scapy’s capabilities to enable detailed analysis of Zigbee
packets. Knight demonstrated injection of forged packets to unlock
a door lock after the jamming of Data Requests [21]. In this work
we explore how an attacker can obtain the network key, which
would enable such command injection attacks. Brown and Gleason
caused PAN ID conflicts and then spoofed MAC acknowledgments
so that a door sensor would not be able to notify the alarm system
if its door was opened [8]. We repurpose this attack to prevent a
targeted Zigbee End Device from updating its PAN ID until the
end user decides to factory reset it and expose the network key. In
addition, our decision tree enables us to disconnect Zigbee Routers
as well by selectively jamming Network Update commands.

9 CONCLUSION
In this work we introduce Zigator and a testbed design that enable
in-depth security analysis of Zigbee networks. We delineate multi-
ple reconnaissance attacks against centralized Zigbee networks and
show that, despite NWK-layer encryption, an attacker can identify
certain NWK commands with 100% accuracy. We use this informa-
tion to develop selective jamming and spoofing attacks that can
lead to the exposure of the network key by targeting devices that
use known Trust Center link keys. We provide recommendations
to protect against leakage of the network key, while we publicly
release our software tools and dataset. Our work sheds light on the
consequences of disablingMAC-layer security in centralized Zigbee
networks. As we demonstrate, NWK-layer security is insufficient
to protect against several passive and active attacks.

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

REFERENCES
[1] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus

Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and A. Selcuk
Uluagac. 2018. Peek-a-Boo: I see your smart home activities, even encrypted!
arXiv:1808.02741 [cs.CR]

[2] Atmel Corporation. 2009. AT86RF231/ZU/ZF datasheet. 8111C-MCU Wireless-
09/09.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:
A survey. Computer Networks 54, 15 (2010), 2787–2805. https://doi.org/10.1016/j.
comnet.2010.05.010

[4] Bastian Bloessl. [n.d.]. gr-foo. Retrieved May 15, 2020 from https://github.com/
bastibl/gr-foo

[5] Bastian Bloessl. [n.d.]. gr-ieee802-15-4. Retrieved May 15, 2020 from https:
//github.com/bastibl/gr-ieee802-15-4

[6] Bastian Bloessl. 2019. Low-Cost ZigBee Selective Jamming. Retrieved May 15,
2020 from https://www.bastibl.net/reactive-zigbee-jamming/

[7] Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer. 2013.
A GNU Radio-based IEEE 802.15.4 Testbed. In Proceedings of the 12th GI/ITG KuVS
Fachgespräch “Drahtlose Sensornetze” (FGSN). 37–40.

[8] Francis Brown and Matthew Gleason. 2019. ZigBee Hacking: Smarter Home
Invasion with ZigDiggity. Presented at Black Hat USA 2019.

[9] Ed Callaway, Paul Gorday, Lance Hester, Jose A. Gutierrez, Marco Naeve, Bob
Heile, and Venkat Bahl. 2002. HomeNetworkingwith IEEE 802.15.4: ADeveloping
Standard for Low-Rate Wireless Personal Area Networks. IEEE Communications
Magazine 40, 8 (2002), 70–77. https://doi.org/10.1109/MCOM.2002.1024418

[10] Check Point Software Technologies Ltd. 2020. The Dark Side of Smart
Lighting: Check Point Research Shows How Business and Home Net-
works Can Be Hacked from a Lightbulb. Retrieved May 15, 2020 from
https://blog.checkpoint.com/2020/02/05/the-dark-side-of-smart-lighting-
check-point-research-shows-how-business-and-home-networks-can-be-
hacked-from-a-lightbulb/

[11] CRAWDAD. [n.d.]. CRAWDAD: A Community Resource for Archiving Wireless
Data At Dartmouth. Retrieved May 15, 2020 from https://crawdad.org/

[12] Morris Dworkin. 2004. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. https://doi.org/10.6028/NIST.
SP.800-38C NIST Special Publication 800-38C.

[13] Helder Eijs. [n.d.]. PyCryptodome: A self-contained cryptographic library
for Python. Retrieved May 15, 2020 from https://github.com/Legrandin/
pycryptodome

[14] Ettus Research. [n.d.]. USRP N210 Software Defined Radio (SDR). Retrieved May
15, 2020 from https://www.ettus.com/all-products/un210-kit/

[15] GNU Radio. [n.d.]. GNU Radio – the Free and Open Software Radio Ecosystem.
Retrieved May 15, 2020 from https://github.com/gnuradio/gnuradio

[16] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Ryan Speers, and Sean W.
Smith. 2012. Api-do: Tools for Exploring the Wireless Attack Surface in Smart
Meters. In Proceedings of the 45th Hawaii International Conference on System
Sciences (HICSS). 2133–2140. https://doi.org/10.1109/HICSS.2012.115

[17] Tianbo Gu, Zheng Fang, Allaukik Abhishek, Hao Fu, Pengfei Hu, and Prasant
Mohapatra. 2020. IoTGAZE: IoT Security Enforcement via Wireless Context
Analysis. (2020). To appear in the Proceedings of the 2020 IEEE Conference on
Computer Communications (INFOCOM).

[18] IEEE Computer Society. 2011. IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). https:
//doi.org/10.1109/IEEESTD.2011.6012487 IEEE Std 802.15.4-2011.

[19] IEEE Registration Authority. [n.d.]. MAC Address Block Large (MA-L). Retrieved
May 15, 2020 from http://standards-oui.ieee.org/oui/oui.txt

[20] IEEE Registration Authority. 2019. Guidelines for Use of Extended Unique Identi-
fier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID). Re-
trievedMay 15, 2020 from https://standards.ieee.org/content/dam/ieee-standards/
standards/web/documents/tutorials/eui.pdf

[21] Matt Knight. 2016. Wireless Lockpicking: Exploring 802.15.4 Command Injection.
Presented at Cyberspectrum 14.

[22] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 1997. Hash
functions based on block ciphers. In Handbook of Applied Cryptography. CRC
Press.

[23] Philipp Morgner, Stephan Mattejat, Zinaida Benenson, Christian Müller, and
Frederik Armknecht. 2017. Insecure to the Touch: Attacking ZigBee 3.0 via
Touchlink Commissioning. In Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec). 230–240. https://doi.org/
10.1145/3098243.3098254

[24] National Institute of Standards and Technology. 2001. Advanced Encryption
Standard (AES). https://doi.org/10.6028/NIST.FIPS.197 FIPS 197.

[25] Qi Hardware Inc. [n.d.]. Ben-WPAN Overview. Retrieved May 15, 2020 from
http://downloads.qi-hardware.com/people/werner/wpan/web/

[26] Qi Hardware Inc. [n.d.]. IEEE 802.15.4 subsystem. Retrieved May 15, 2020 from
http://projects.qi-hardware.com/index.php/p/ben-wpan/

[27] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. 2017. IoT
Goes Nuclear: Creating a ZigBee Chain Reaction. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP). 195–212. https://doi.org/10.1109/SP.
2017.14

[28] Samsung Electronics Co., Ltd. [n.d.]. SmartThings. Retrieved February 27,
2020 from https://play.google.com/store/apps/details?id=com.samsung.android.
oneconnect

[29] Samsung Electronics Co., Ltd. [n.d.]. Works With SmartThings. Retrieved May
15, 2020 from https://www.smartthings.com/products

[30] Naveen Sastry and DavidWagner. 2004. Security Considerations for IEEE 802.15.4
Networks. In Proceedings of the 3rd ACM Workshop on Wireless Security (WiSe).
32–42. https://doi.org/10.1145/1023646.1023654

[31] Thomas Schmid, Oussama Sekkat, and Mani B. Srivastava. 2007. An Experimental
Study of Network Performance Impact of Increased Latency in Software Defined
Radios. In Proceedings of the Second ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization (WinTECH). 59–
66. https://doi.org/10.1145/1287767.1287779

[32] Scikit-learn Project. [n.d.]. Scikit-learn: Machine Learning in Python. Retrieved
May 15, 2020 from https://github.com/scikit-learn/scikit-learn

[33] SecDev. [n.d.]. Scapy: the Python-based interactive packet manipulation program
& library. Retrieved May 15, 2020 from https://github.com/secdev/scapy

[34] SmartThings Community. 2015. Security of SmartThings ecosystem. Re-
trieved May 15, 2020 from https://community.smartthings.com/t/security-of-
smartthings-ecosystem/30827/5

[35] Rahmadi Trimananda, Janus Varmarken, AthinaMarkopoulou, and Brian Demsky.
2020. Packet-Level Signatures for Smart Home Devices. In Proceedings of the 2020
Network and Distributed System Security Symposium (NDSS). https://doi.org/10.
14722/ndss.2020.24097

[36] Matthias Wilhelm, Ivan Martinovic, Jens B. Schmitt, and Vincent Lenders. 2011.
Short Paper: Reactive Jamming inWireless Networks: HowRealistic is the Threat?.
In Proceedings of the 4th ACM Conference on Wireless Network Security (WiSec).
47–52. https://doi.org/10.1145/1998412.1998422

[37] Wireshark Foundation. [n.d.]. TheWireshark network protocol analyzer. Retrieved
May 15, 2020 from https://code.wireshark.org/review/gitweb?p=wireshark.git

[38] Anthony D. Wood, John A. Stankovic, and Gang Zhou. 2007. DEEJAM: De-
feating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks.
In Proceedings of the 4th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON). 60–69. https:
//doi.org/10.1109/SAHCN.2007.4292818

[39] Joshua Wright and Johnny Cache. 2015. Hacking ZigBee. In Hacking Exposed
Wireless: Wireless Security Secrets & Solutions (3rd ed.). McGraw-Hill Education
Group.

[40] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. 2005. The
Feasibility of Launching and Detecting Jamming Attacks inWireless Networks. In
Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc). 46–57. https://doi.org/10.1145/1062689.1062697

[41] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Traffic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS). 1074–1088. https://doi.org/10.1145/3243734.3243820

[42] Zigbee Alliance. [n.d.]. Smart Home. Retrieved May 15, 2020 from https://
zigbeealliance.org/market-uses/smart-home/

[43] Zigbee Alliance. [n.d.]. Zigbee. RetrievedMay 15, 2020 from https://zigbeealliance.
org/solution/zigbee/

[44] Zigbee Alliance. [n.d.]. Zigbee Certified Products Archives. Retrieved May 15,
2020 from https://zigbeealliance.org/product_type/certified_product/

[45] Zigbee Alliance. 2015. ZigBee Specification. ZigBee Document 05-3474-21.
[46] Zigbee Alliance. 2016. Base Device Behavior Specification. ZigBee Document

13-0402-13.
[47] Zigbee Alliance. 2016. ZigBee Cluster Library Specification. ZigBee Document

07-5123.
[48] Zigbee Alliance. 2017. zigbee: Securing the Wireless IoT. White Paper.
[49] Tobias Zillner and Sebastian Strobl. 2015. ZigBee Exploited - The Good, the Bad

and the Ugly. Presented at Black Hat USA 2015.

A DECISION TREE FOR THE
IDENTIFICATION OF NWK COMMANDS

In Section 7.2 we presented a partial depiction of our decision tree.
The full depiction of our decision tree is shown in Fig. 12. The
relative frequency by which each encrypted NWK command in our
dataset reached a pure leaf node of our decision tree is provided
in Table 5. As we explained in Section 7.2, half of them always
reach a pure leaf node. Regarding the remaining half, their varying

https://arxiv.org/abs/1808.02741
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://github.com/bastibl/gr-foo
https://github.com/bastibl/gr-foo
https://github.com/bastibl/gr-ieee802-15-4
https://github.com/bastibl/gr-ieee802-15-4
https://www.bastibl.net/reactive-zigbee-jamming/
https://doi.org/10.1109/MCOM.2002.1024418
https://blog.checkpoint.com/2020/02/05/the-dark-side-of-smart-lighting-check-point-research-shows-how-business-and-home-networks-can-be-hacked-from-a-lightbulb/
https://blog.checkpoint.com/2020/02/05/the-dark-side-of-smart-lighting-check-point-research-shows-how-business-and-home-networks-can-be-hacked-from-a-lightbulb/
https://blog.checkpoint.com/2020/02/05/the-dark-side-of-smart-lighting-check-point-research-shows-how-business-and-home-networks-can-be-hacked-from-a-lightbulb/
https://crawdad.org/
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38C
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://www.ettus.com/all-products/un210-kit/
https://github.com/gnuradio/gnuradio
https://doi.org/10.1109/HICSS.2012.115
https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2011.6012487
http://standards-oui.ieee.org/oui/oui.txt
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://doi.org/10.1145/3098243.3098254
https://doi.org/10.1145/3098243.3098254
https://doi.org/10.6028/NIST.FIPS.197
http://downloads.qi-hardware.com/people/werner/wpan/web/
http://projects.qi-hardware.com/index.php/p/ben-wpan/
https://doi.org/10.1109/SP.2017.14
https://doi.org/10.1109/SP.2017.14
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://www.smartthings.com/products
https://doi.org/10.1145/1023646.1023654
https://doi.org/10.1145/1287767.1287779
https://github.com/scikit-learn/scikit-learn
https://github.com/secdev/scapy
https://community.smartthings.com/t/security-of-smartthings-ecosystem/30827/5
https://community.smartthings.com/t/security-of-smartthings-ecosystem/30827/5
https://doi.org/10.14722/ndss.2020.24097
https://doi.org/10.14722/ndss.2020.24097
https://doi.org/10.1145/1998412.1998422
https://code.wireshark.org/review/gitweb?p=wireshark.git
https://doi.org/10.1109/SAHCN.2007.4292818
https://doi.org/10.1109/SAHCN.2007.4292818
https://doi.org/10.1145/1062689.1062697
https://doi.org/10.1145/3243734.3243820
https://zigbeealliance.org/market-uses/smart-home/
https://zigbeealliance.org/market-uses/smart-home/
https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/product_type/certified_product/

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Akestoridis et al.

12 bytes 2 bytes 3 bytes Other

ZED Other True False 0xfffc Other

ZED or 0xfffd
Other

True False

5 or 9 bytes
1 byte 7 bytes 15 or 23 bytes Other

True False ZED Other ZR Other ZR Other

ZC Other ZED or 0xfffd Other ZED Other

ZED ZC Other

ZR Other

ZED or 0xfffd Other

Payload Length

Network Update NWK Destination Type Single-Hop
Command NWK Destination Type

End Device
Timeout Response

End Device
Timeout Request Rejoin Response NWK Destination Type Single-Hop

Command

Payload LengthNetwork Status Network Status,
Route Record

Link Status Route Request

Route Record Single-Hop
Command NWK Source Type NWK Destination Type NWK Destination Type

NWK Source Type NWK Destination Type Route Record Route Record,
Route Reply NWK Source Type

NWK Source Type

Route Record NWK Source Type

Leave NWK Destination Type Network Status Network Status,
Route Record Route Record Route Record,

Route Reply

Route Record Route Record,
Route Reply

Route Record,
Route Reply,

Network Report

Route Record,
Network Report Route Record

Leave Leave,
Rejoin Request

Figure 12: The decision tree that we developed for the identification of encrypted NWK commands based on the assumptions
that we stated in Sections 3 and 7.2 as well as the reconnaissance attacks that we presented in Section 7.1. Pure leaf nodes are
colored yellow with a solid outline, while impure leaf nodes are colored orange with a dashed outline.

percentages indicate that there are several cases where they reach
an impure leaf node of our decision tree. However, even though the
utilized features were not sufficient to always identify this set of
encrypted NWK commands uniquely, their identification has been
narrowed down to either two or three possibilities. Furthermore,
it is important to note that while our dataset does not contain all
possible variations of the 12 possible NWK commands, our decision
tree was developed using information from the Zigbee PRO 2015
specification itself. For example, there may be cases where the
payload length of a Network Status command is 1 byte [45, p. 278],
although we did not observe any during our experiments, which
resulted in the creation of an impure leaf node that is reached by a
large number of Route Record commands that we did observe.

As another example, consider an encrypted NWK command
where its payload length is 1 byte, its NWK destination is not the
0xfffc broadcast address, and it is limited to a single-hop transmis-
sion. We can observe from Table 4 that only two NWK commands
can have such values: the Leave command and the Rejoin Request
command. If its NWK source is the Zigbee Coordinator, then we can
conclude with certainty that it is a Leave command because Zigbee
Coordinators do not transmit Rejoin Request commands. Similarly,
if the NWK destination is a Zigbee End Device or the 0xfffd broad-
cast address, then the aforementioned NWK command must be
a Leave command. However, if the NWK source is a Zigbee End
Device and the NWK destination is the Zigbee Coordinator, then
we cannot differentiate a Leave command from a Rejoin Request
command without having to rely on additional features. In addition,
consider an encrypted NWK command where its payload length
is 23 bytes, its NWK destination is the Zigbee Coordinator, and its
NWK source is a Zigbee Router. This NWK command could be (a)

Table 5: Percentage of encrypted NWK commands in our
dataset that reached a pure leaf node of our decision tree.

NWK Command Name Percentage of Packets

Route Request 100.0%
Route Reply 0.0%
Network Status 0.4%
Leave 72.1%
Route Record 4.6%
Rejoin Request 0.0%
Rejoin Response 100.0%
Link Status 100.0%
Network Report 0.0%
Network Update 100.0%
End Device Timeout Request 100.0%
End Device Timeout Response 100.0%

a Route Record command that describes a relay path that consists
of 11 hops, (b) a Route Reply command that includes the extended
addresses of its originator and responder, or (c) a Network Report
command that contains the PAN IDs of 7 neighboring networks.
Depending on the topology of the inspected Zigbee network and
previously observed events, one of these possibilities may be more
likely than the others. We consider the development of additional
features for our decision tree as part of our future work.

	Abstract
	1 Introduction
	2 Background
	3 Threat Model and Assumptions
	4 Testbed Instrumentation
	4.1 Packet Sniffing
	4.2 Packet Injection
	4.3 Packet Jamming

	5 Security Analysis with Zigator
	6 Experimental Setup
	7 Results
	7.1 Reconnaissance Attacks
	7.2 Identification of NWK Commands
	7.3 Key-Transport Attacks

	8 Related Work
	9 Conclusion
	References
	A Decision Tree for the Identification of NWK Commands

